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習うより慣れる

お願い

この教材は将来、本にする計画があ
るので、授業と復習に利用すること
以外に持ち出さないことにして下さ
い。



はじめに（作成者の意図）

• 高校を卒業して、統計学そして医療（生物）統計学を学ぶことになった人に
とって、統計学は数学だと思い込んでいるかもしれません。

• このコンテンツは、統計学が数学の力を借りながらも、きわめて人間の判断
（哲学的あるいは認知的）によって成り立っているかを知ることを大切にして
教材として作成しました。

• 先行する参考書群では数学的に厳密な説明が優先するため、どうしても初
学者が直感的にイメージすることができないものがあると私は感じています。

• そこで、まずイメージを描けることを優先して、数学的厳密性にこだわらない
という方針を立てました。ただし、実務統計処理の手計算ができないというよ
うなことがない範囲でデフォルメしています。

• まず一通り全体像をつかんで学習した暁に、統計学に対するアレルギーが
無くなることがこのコンテンツの目標です。



• 学びのための問いが用意されています。

• 時々で、電卓（ルートつき）と手を使って練習
問題や問いに答えてください。



おおよその学習項目

• １ 統計学を使ってできることを知る
• ２ 統計学の進歩を知る
• ３ データの概念
• ４ 代表値（計算方法）
• ５ サンプルと母集団の概念を知る
• ６ サンプルと母集団を繋ぐ確率分布を知る
• ７ 確率の実験から二項分布曲線を描く
• ８ 確率現象を受け入れる
• ９ 現実（観測値）と確率変数の関係を知る
• 10 確率変数のふるまいを偶然として認識する
• 11 サンプルから母集団の性質を知るための鍵を知る
• 12 点推定と区間推定 ＜おまけ チェビシェフの不等式＞
• 13 標本選択時の組み合わせ（全数）とある状態の確率の概念
• 14 標本誤差を用いた母平均の取りうる範囲の決定 ＜おまけ中心極限定理と大数の法則＞
• 15 Z統計量のあらまし（演算）
• 16 ｔ統計量のあらまし
• 17 分散を用いた分析方法（共分散から相関係数を求める）
• 18 最小二乗法による直線回帰（重回帰分析のあらまし、因子分析のあらまし）
• 19 クロス表に関する分析（χ二乗統計量を用いた検定方法） ＜おまけ指数分布のあらまし＞
• 20 対数を用いた分析 二値の推定式 ロジスティック回帰式のあらまし
• 21 時間を扱う分析（指数分布にもとづく検定であることの気づき）生存時間分析のあらまし
• 22 カプランマイヤー法・COX回帰のあらまし
• 23 数理モデルのあらまし 次の統計解析学のステップに進むときに参照するとよい、おススメのテキストや動画コ

ンテンツ



１ 統計が役立つこととは？代表値
（または要約値、平均から標準偏差
数と量 2次元データ相関と回帰）



• 統計はすべての学問の基礎

• 統計はみな自然に行っていることを、言
葉に表したもの



とんでもない盆踊り大会 たくさんの人がいる 大会は2時間で終わる
この人たちに大会中に1ぺんにできるだけきちんと履ける靴下を配るに
は？どうしたらいいだろう？（ヒント あまり時間がないということだから）



統計学でできるようになること

•データの要約

•データからの推測



とんでもない盆踊り大会 たくさんの人がいる 大会は2時間で終わる
この人たちに一人残さず靴下を配るには？どうしたらいいだろう？



キャンプのカレー
味見

はじめて 50人分のカレーをつくることになった。
やたらしょっぱい味やほとんど味のなかったり、ドロドロのカレーだけはごめんだよ
と皆が言う。塩加減や甘み、ちょどいい粘度のカレーにするには？



全数に関する情報を知りたいとき
統計学ができること

•データの要約

•データからの推測





要因が及ぼす効果を知りたいとき
統計学ができること２

•データの中身を知る

•データの変化に効く物を知る



おいしいシチューをつくろうと思い立って、材料をそろえ、レシピにしたがって調
理開始。とろとろに煮込んで、びっくりさせよう。



おいしいシチューができました。かろうじて原型をとどめている材料もあるような
・・・もう、これだけからは材料、分量はわからない。 うまいなあ！何が効いているのかな？



統計学でできるようになること２

•データの中身を（切り刻むこと
なく）知る

•データの変化に効く物を知る

具体例



立てないとき、その原因を探る

いわゆるロコモ度テスト



統計学の意義

• 経験や勘、好き嫌いによって勝手に判断して期待通り
の成果が得られないことを少なくすることができる。

• 実データの性質を確率を目安にして得られる仮想デー
タと比較することで、そこにインチキや人為的な誤りを
発見し、データに基づく判断の精度を上げることを意識
できるようになる。

• 問題を解決するためにデータの収集、分析（問題が発
生している原因の究明）、改善策の決定に統計学の思
考が生かせる。



キーコンテンツ

• １ 統計が役立つこととは？代表値 （または要約値、平均から標準偏差 数と量 2次元
データ相関と回帰）

• ２ 標本-母集団 確率（離散 連続 条件付）と二項分布

• ３ 二項分布、正規分布（実験しよう）

• ４ 標本から仮想母集団の様子を推定する理論（原理）標準正規分布 Z量
• ５ 点推定 一定以上の確率で存在する平均の一点を知ること
• ６ 区間推定 一定以上の確率で平均の取りうる範囲を知ること
• ７ 検定の考え方 平均値の差を偶然で判定 t検定

• 8 カテゴリの別が頻度と関連する程度を偶然を定規に使って判定
カイ二乗分布（適合度検定・独立性の検定）

• ９ データ生成に関わる要因の違いの影響度を偶然を定規に使って判定
分散比を用いる（分散分析）

• 10 回帰分析（重回帰とロジスティックの話） オッズ比
生存時間分析のイメージ

練習データに、時に医療実践場面で実際に見られるものを用いる。



１ 代表値

（平均から標準偏差 数と量
2次元データ相関と回帰）

代表値の概念は、集団のデータをできるだけ少ない情報
で表現するために

編み出された考え方かつ技である。統計データの基本の
きとなる。



平均

• データの合計を、データの数で割ったもの



全ての値の合計を個（体）数で割ったものを平均という

170
150175175180170



この100年で 各国の男性の身長は伸びている
平均身長から判断できる



練習１

A： ２，４，５，３，２

Aの平均を求めてください。



偏差

• 個々のデータと平均の差



平均からの離れ具合（距離）を偏差という

170
-20＋5＋5＋10＋０



練習２

A： ２，４，５，３，２

Aの偏差を求めてください。



平方和

• 偏差の二乗の合計



偏差の二乗の合計を平方和という

170
-20＋5＋5＋10＋０ ＾2 ＾2＾2＾2＾2



練習３

A： ２，４，５，３，２

Aの平方和を求めてください。



分散

• 平方和の平均化処理

• 偏差の二乗の合計の平均



偏差の二乗の合計の平均を分散という

170
-20＋5＋5＋10＋０ ＾2 ＾2＾2＾2＾2

5

100 25 25
4000



練習４

A： ２，４，５，３，２

Aの分散を求めてください。



標準偏差

• 分散の平方根



分散の平方根を標準偏差という

170
-20＋5＋5＋10＋０ ＾2 ＾2＾2＾2＾2

5

100 25 25
4000



練習４

A： ２，４，５，３，２

Aの標準偏差を求めてください。



• 何も見ずにできた人は、飛ばして2章へ

• 標準偏差を求める手順が、まったく頭に浮か
ばなかった人は、統計代表地の唄のフレーズ
を唱えることを強くお勧めします。

• フレーズは・・・



幸せの近道それは

５の４３９
何のことか、もうわかるよね

















練習５（できなくても良い）

•A： ２，４，５，３，２

Aの分散を偏差の計算を用いずに計算過程を記述し、
求めてください。（統計検定2級レベル）

ヒント 平方和の最小値を求める考え方



練習６

A： 12，15，11 ，18 ，16



追加 重要なこと

• 統計的に物事のデータ特性を考えるには

• データの分布（形）を意識する

• データの形は三角を意識する

• 頂点は平均、すそ野は分散。この二つの値を
押さえることが大切。



２ 標本-母集団

確率（離散 連続 条件付）

ポイント：形の相似性を考えよう



母集団（あるいは真の全部）

すべて揃っている皿 10個の餃子が盛られている



標本（もはや全部ではない部分）

すべて揃っていれば
10個の餃子の皿であるが、遅し・・・



標本（もはや全部ではない部分）

すべて揃っていれば
10個の餃子の皿であるが、遅し・・・



標本の性質から母集団の性質を推定



この時に存在する統計学の原理が

• 確率分布

• 無作為に標本から確率のはっきりした性質を
もつデータを抽出してその頻度と確率の大き
さを並べて図式化すると・・・

（無作為復元抽出）

• そこに不思議な形（＝分布）が現れる



正規分布



確率が1/2の現象を扱った確率分布
を特に二項分布という

例えば10回コインをトスする、さらには20回、30回とトスの回数を増やすと、正規分布
になる！



• Binomial distribution

• (1) probability massf(x,n,p)=nCxpx(1−p)n−x

• (2) lower cumulative distributionP(x,n,p)=x∑t=
0f(t,n,p)

• (3) upper cumulative distributionQ(x,n,p)=n∑t
=xf(t,n,p)





標本の性質から母集団の性質を推定
できるとする仮定がこれ

• 標本の形＝分布を、形づくらせるもの（＝特
性）が確率のようなもので決められる

• 標本は母集団から無作為に取り出されたも
の（あるいは、標本を無作為に集めていけば、
やがて母集団と同じものになる）



確率が作り出す形って何？



正規分布



今まで扱っていたデータを見直す

• それが全てとみなす

• それが全てではなく、部分とみなす



全体と部分の関係を意識する



キャンプのカレー
味見

はじめて 50人分のカレーをつくることになった。
やたらしょっぱい味やほとんど味のなかったり、ドロドロのカレーだけはごめんだよ
と皆が言う。塩加減や甘み、ちょどいい粘度のカレーにするには？



部分であることの印として

• それが全体そのもののデータとは違うという
目印をつけようじゃないか！

• 平均は同じでも、分散に工夫を施す必要あり

• そこで



（不偏分散の）標準偏差

• 不偏分散の平方根

まず名前だけ覚えておこう

それが何かは、次に明らかになる



母集団（あるいは真の全部）

すべて揃っている皿 10個の餃子が盛られている



標本（もはや全部ではない部分）

すべて揃っていれば
10個の餃子の皿であるが、遅し・・・



標本（もはや全部ではない部分）

すべて揃っていれば
10個の餃子の皿であるが、遅し・・・



標本の性質から母集団の性質を推定



偏差の二乗を（n―1）で割ったものを不偏分散という

170
-20＋5＋5＋10＋０ ＾2 ＾2＾2＾2＾2

5 - 1

100 25 25
4000



不偏分散の平方根を（不偏）標準偏差という

170
-20＋5＋5＋10＋０ ＾2 ＾2＾2＾2＾2

100 25 25
4000

5 - 1



母集団（あるいは真の全部）

すべて揃っている皿 10個の餃子が盛られている



標本（もはや全部ではない部分）

すべて揃っていれば
10個の餃子の皿であるが、遅し・・・



標本（もはや全部ではない部分）

すべて揃っていれば
10個の餃子の皿であるが、遅し・・・



標本の性質から母集団の性質を推定



３ 二項分布、正規分布（実験しよう）



統計学の基礎
確率の応用



確率って何だっけ？

すべての場合の数

ある事象の場合の数



重要なある視点 １

• サンプル（標本）の数値から、標本平均と不
偏分散を用いて 母集団の母平均と母分散
を推定する

• このとき、サンプルと母集団の構造を相似形
の関係があると見立てることで、この推定は
成立する

• では、相似形の関係を見たてる原理は？

推測統計



• それが確率である（この繋ぎを作るしくみと考えてよい）

• 確率が一定の構造を持つものを想定してみよう

• コイン？ サイコロ？

• 全ての出目の確率を全部足すと

• 確率を導く構造が正多面体であれば、必ず、

その出目の確率の合計は １ になる。

重要なある視点 ２



確率の復習・・・



確率 離散値

すべての場合の数

ある事象の場合の数
P＝



すべての場合事象モデルの面積

ある場合事象モデルの面積

P＝

確率 連続値



条件付き確率
ベイズ統計学の基礎
事前情報を用いて、すべての場合の
数をあらかじめ絞る

当たりの入ったくじを詰めた箱をじっと見ておく

彼氏（彼女）と別れたとの情報を（しかし、確かな！）
得て アプローチする



ここで確率の威力をまざまざと味わって
おかねばなるまい

正しいデタラメ＝偶然 （または確率の等しい乱
数の利用）を利用するのが推測をするときの統
計学の常套手段なんですよ（＾ ＾）。それがデタ
ラメであることを確かめるのは、デタラメにはい
かないのです、少し方法が必要です。

ものすごく大事
なところ



二項分布を確かめる実験

• １ コインを用意する
• ２ 机を片付け、中央にコインを立てる
• ３ 頂点を片指で支え、もう片方のヒトサシ指で

サイドをはじく
• ４ あとはスピンして表か裏が出るのを待つ

• この過程を10回繰り返す
• 表が出た回数と裏が出た回数を記録する
私たちが30人以上いた場合、この結果は衝撃的！





何人いるか？

表１裏９

表２裏８

表３裏７

表４裏６

表５裏５

表６裏４

表７裏３

表８裏２

表９裏１



表１裏９ 表２裏８ 表３裏７ 表４裏６ 表５裏５ 表６裏４ 表７裏３ 表８裏２ 表９裏１



表１裏９ 表２裏８ 表３裏７ 表４裏６ 表５裏５ 表６裏４ 表７裏３ 表８裏２ 表９裏１

1 2 5 16 16 10 7 5 1

不思議ですが、これを7回くらい繰り返すと、ほぼほぼこの形になります。
20回以上では、もはやこの形にしかならなくて、30回を超えると左右の対称性が
はっきりします。



二項分布（確率分布）とは

• ある事象があったとき、この事象がお互いに独立
である（例えば、片方が出たら、もう片方は絶対出
ない）関係にあるものは、恣意的な操作をしない限
り（これを偶然の下でという）

• この事象を何度も繰り返すと、その結果は正規分
布曲線を描く性質が認められる。

• 不思議であるが（繰り返し数が７回を超えたあたり
から著明に出現する（この実験は10回やっている）



この確率の性質は重要な

自然科学の武器であり、

ツールであり、

学術、技術の基礎になっている



確率変数を知っておこう



実数 1 2 3 4 5 6
確率 1/6 1/6 1/6 1/6 1/6 1/6 

確率変数 1/6 1/3 1/2 2/3 5/6 1      

期待値
21/6＝
3.5？

期待値とは
確率変数の合計値
＝確率変数の合計÷個数

一つの変量の各実現値とそれが
起こる確率との積の総和。連続
量の場合は積分値の平均

確率変数とは

試行の結果の任意の
値が出現する確率を、
その実数と掛け合わせ
たもの

現実の値に確率を引っ
付けた 仮想現実値



確率変数とは何か！

この世の中で目に見えているもの、耳で聞こえるもの

現実の世界の数値（観測値）

この世の中で目に見えないもの、耳で聞こえないもの

統計学の世界での 数値 値

ただし、確率の秩序に則って存在するものがあると考
える（認める）

↓
確率の世界の数値（確率変数）



確率変数の役割とは何か！

現実の世界の数値（観測値）
正規分布するかのように見える

（どんなにやってもあくまで近似である＝誤差を含む）

確率の世界の数値（確率変数）
正規分布する（見えるではなく、完全にぴったりそうなのだ）

だって、数学の理想の世界そのものだから。
だから数式でデータの分布を表現できてしまう。
これがデータの推測に数理モデルが使える理由。



頭を冷やそう

そして また取り組んでみよう



平均 0 ，分散 1.2 のとある分布に従う
母集団から3つサンプルを取ってきたら
-1,0,1という値だった。

このとき

母分散→もとの分布の分散なので1.2

標本分散→ -1,0,1 の分散なので計算すると 2/3

不偏標本分散→標本分散の 3/2  倍なので1

再び違う視点で不偏分散が、必要な理由を実感しよう





なぜ不偏分散が重要なのか

• 不偏分散が重要なのは（ランダムサンプリン
グでは）不偏分散の期待値が母分散と一致
するから。



• 母分散を少数のサンプルから推定したいとき
に，期待値が母分散（推定したいもの）と一
致する！ような推定量を使いたくなるのは自
然。

• そのような嬉しい性質（不偏性）を満たすのは
標本分散ではなく不偏分散です。標本分散
を n/n-1倍して調整することで不偏分散が得
られる。



• 標本分散を計算するときに使う平均 xbarは母
平均ではなく標本平均なので，標本分散だと

平均からの差の二乗和（散らばり具合）を小
さく見積もってしまう









出典：https://manabitimes.jp/math/1057





二項分布
（からの正規分布のイメージ）



二項分布はコインの表裏の面の
ような離散的な二値のみの確率
の平均（期待値）と分散から決ま
る分布

曲線で
囲まれ
た面積
が１に
なるよ
うに変
換する



正規分布は

確率変数の平均を頂点とする釣り鐘の形をした分布の
こと （連続変数の確率分布）
そのうち平均を0、分散を1としたものを標準正規分布

という。 この確率密度（面積）の値をZ統計量という

離散数の確率と同じように連続数を扱うためには、標準化（平均０、分散１の確率密度
（面積）にする必要がある。それができれば、万能



重要なある視点 １

• サンプル（標本）の数値から、標本平均と不偏分
散を用いて 母集団の平均と分散を推定する

• このとき、サンプルと母集団の構造を相似形の
関係があると見立てることで、この推定は成立
する

• では、相似形の関係を見たてるための原理は？

再掲



全数に関する情報を知りたいとき
統計学ができること

•データの要約

•データからの推測

再
掲



？

現実の世界では、母集団のことがほとんど分かっていないときが多いに推測統計が役立つ

この小玉を

大玉と同じ形、構成とみ
なすことで、？の姿をする

その“同じさ”を保証する理論（ルール）
に確率と統計の法則を用いる



確率をつかって標本から母集団の
性質を推定する方法

• 一つだけ、もうひとつだけ、演算を使うと、こ
のステージを突破できる！！！ー＞標本から
母集団の性質を推定する手がかりになる道
が開ける！

• それは・・・

• ルートをまわって標準偏差！の次に行うもの



標準誤差を使う！

• 標準誤差をStandard Errorといい、SEと略す

• でも本当はStandard Error of  the  Mean
=S.E.M

• 平均値の精度(誤りの程度）を表す

• SE＝標準偏差/（個数のルート）
同じことではあるが、分散/個数の計算の後に
ルート処理を行う。ルート＝平方根



変動係数CV

• 平均が同じでもデータのばらつき方が異なる
とき、安定性（精度）を表す指標

• 標準偏差を平均で割ったもの

• SD/MEAN



Z統計量とは、確率分布を使った区間

推定を求めるときに使う式であり値で
ある

Z統計量を理解しよう

母平均の推定に使える



• 標本のデータのばらつき（分布）の形

• データの母集団のばらつき（分布）の形

相似の関係と考える

（標本のことしか分からない場合でも、母集団の形を
推測できると考える）分散だけは、若干大きめに考え
ておくとする（n―1）

十分にかき混ぜることが前提＝確率が同じで
あることを利用している



縦（高さ）＝平均＞甘さ
横（底辺の長さ）＝分散>塩味（辛さ）

ただし、よくかき混ぜて、サンプルが全体と同じであるという
確率になっていることが前提条件となる。



縦（高さ）＝平均＞甘さ
横（底辺の長さ）＝分散>塩味（辛さ）

ただし、よくかき混ぜて、サンプルが全体と同じであるという
確率になっていることが前提条件となる。不偏分散とは推

測の限界を踏まえた手口である。

現実の世界では

少し多めに推測した方が都
合がいい。個数ー１にすると

一人当たりの分け前が大きく
なる＝分散は大きくなる



不偏分散

• 平方和を「データ数―1 」で割ったもの

サンプリングされたものから作った仮想母集団の
分散だと思ってもいい



データ1個当たりのバラつき度
• CV値：変動係数（Coefficient of Variation）

• 単位の異なるデータのばらつきや、平均値に対す
るデータとばらつきの関係を相対的に評価する際
に用いる単位を持たない（＝無次元の）数値（すべ
ての現象に使える指標ー＞なぜなら単位がキャン
セル（打ち消される）
されるから）

• 求め方 （標本）標準偏差÷平均
役割 物事の精度（安定性）の指標になる。

例えば 模擬試験の得点のCVが15％以下であれば、万が一調子が悪くても、

平均点から１５％下がった点数くらいは得点できるだろうという予想ができる。

これも知っておこう！便利だよ！！



1群の解析からわかること

データの要約
データからの推測

平均と分散からサンプルの△を見出し、
母集団の△の形を知ること

母平均と母分散（不偏分散）をよく混ぜた汁（確率を一
定にして）から取り出したサンプルから推測すること

ところが、
母平均はサンプルの偏りによって多少ばらつくだろう

記述統計



点推定と区間推定



まず平均の取りうる範囲を求めよう
また分散の取りうる範囲を求めよう



推定はやじろべいに助けてもらってイメージしよう

ここで釣り合ってい
る。重心が平均と
同じとき、このやじ
ろべいを大きくして
も同じ位置で重心
が取れる！

これが点推定に応
用できる



ところが、サンプル
は必ずしも足元が
同じ位置でない（サ
ンプルの取り方に
誤差が存在する）

仕方ないので、この誤差を認めて、この誤差の取りう
る範囲から、母平均の取りうる位置を推定するのが
区間推定



ところが、サンプル
は必ずしも足元が
同じ位置でない（サ
ンプルの取り方に
誤差が存在する）

仕方ないので、この誤差を認めて、この誤差の取りう
る範囲から、母平均の取りうる位置を推定するのが
区間推定



推定はやじろべいに助けてもらってイメージしよう

ところが重心が同じでも、
腕の長さが異なることが
ある。標本の腕の長さと
母集団の腕の長さが同
じとは限らない。 さあ、
どうする



ところが、
母平均はサンプルの偏りによって多少ばらつくだろう

えっ！どういうこと・・・

これを表した代表値が
標準誤差。



点推定：母平均を1つの値で推定すること。

区間推定：母平均のとりうる範囲を推定するこ
と。

すなわち

母平均はサンプルの偏りによって多少ばらつくので、その
範囲をSDを目安に確率（のばらつきの形）＝標準誤差を
使ってアウトプットすること。



区間推定

• 一定の確率で母平均が６８％の範囲で取りう
る範囲は１標準偏差 この範囲を推定

• 一定の確率で母平均が９６％の範囲で取りう
る範囲２標準偏差 この範囲を推定

• 一定の確率で母平均が９５％の範囲で取りう
る範囲1.96標準偏差 この範囲を推定



中心極限定理というんだよ↑

これは母集団のデータの標準
偏差を個数の平方根で割った
値であらわせる＝標準誤差と
いう



大数の法則と呼ぶんだよ↓



Z統計量
と
t統計量

連続値の統計量であることに注意



推定はやじろべいに助けてもらってイメージしよう

ここで釣り合ってい
る。重心が平均と
同じとき、このやじ
ろべいを大きくして
も同じ位置で重心
が取れる！

これが点推定に応
用できる



ところが、サンプル
は必ずしも足元が
同じ位置でない（サ
ンプルの取り方に
誤差が存在する）

仕方ないので、この誤差を認めて、この誤差の取りう
る範囲から、母平均の取りうる位置を推定するのが
区間推定



ところが、サンプル
は必ずしも足元が
同じ位置でない（サ
ンプルの取り方に
誤差が存在する）

仕方ないので、この誤差を認めて、この誤差の取りう
る範囲から、母平均の取りうる位置を推定するのが
区間推定



Z統計量は

母分散が分かっているとき標本平均と母
平均の離れ具合が標本分散の平均（＝
標準偏差で割った値）の何倍であるか表
すものである

ｔ統計量は

母集団の分散が不明なとき標本平均と
母平均の離れ具合が標本不偏分散の
平均（＝不偏標準偏差をルートｎで割っ
た値）の何倍であるか表すものである＊
但し母集団の分散が不明なときに保守的にn―1の
標本不偏分散を用いて計算される。



ｘ− 𝜇

SD/√𝑛
Z

分散はｎ－1をつかう

ここでμは母平均Xは標本（部分）平均 母分散が分かっている場合（分散の計算をｎ
で割って求めるが、標本分散である場合はn-1（自由度）を用いる

テキストでは母平均をμ 標本平均をｍと書いて説明するものがある。

正規分布の確率計算方法に用いるZ値

ただし

母集団の特徴が分
かり切っているときに

その一部分は、全体
の何割に該当するか
分かれば、縮尺拡大
率が分かるので、

部分から全体を正確
に求めることができ
るーこのときはサン
プリングエラーを無
視すれば分散は母
分散を用いる



そのデータから得られた情報（平均と分散）から、
そのZ統計量（値）＝標準偏差の倍数が正規分

布に従うとすると、それが起きうる確率はいくつ
か？

標準正規分布表統計表の見方
標準正規分布表から、確率＝求めたZ統計値
の確率の近似値がわかる。
（列はZ値の小数点第1位まで、行はZ値の小数

点第2位以降の値を表している！）
95％有意水準は1.96

そのZ統計量が起きる確率（ｐ）を知る方法
記述統計



もう一度やじろべいを使って考える

ここで釣り合ってい
る。重心が平均と
同じとき、このやじ
ろべいを大きくして
も同じ位置で重心
が取れる！

これが点推定に応
用できる



ところが、サンプル
は必ずしも足元が
同じ位置でない（サ
ンプルの取り方に
誤差が存在する）

仕方ないので、この誤差を認めて、この誤差の取りう
る範囲から、母平均の取りうる位置を推定するのが
区間推定



ところが、サンプル
は必ずしも足元が
同じ位置でない（サ
ンプルの取り方に
誤差が存在する）

仕方ないので、この誤差を認めて、この誤差の取りう
る範囲から、母平均の取りうる位置を推定するのが
区間推定



ところが重心が同じでも、腕の長さが異なることがある。標本の腕の
長さと母集団の腕の長さ(分散）が同じとは限らない。 さあ、どうする



ｘ− 𝜇

𝑆𝐷/√n
t

不偏分散はｎ―1に注意

ここでμが仮想母平均Xは標本平均の期待値 不確かな母集団の分散（底辺の長
さ）が不明であるときに用いる。

テキストによっては母平均をμ 標本平均をｍと書いて説明するものがある。

母平均の推定に用いるｔ値

例数・標本数が30を
切った標本から、推定
するのが不確かな母
集団の分散（底辺の長
さ）が不明であるとき、
保守的に誤差を推定
する方法がｔ統計量で
ある。Z統計量の分母

の計算に異なるものを
用いる。すなわち、SD
を更にnの平方根で
割ったやつを用いる。



一言でいうと t統計量は

標本平均と母平均の離れ具合が標本誤差＝標本

分散の平均（＝標準偏差をルートｎで割った値）の何倍で

あるか表すもの。母分散がわからないときに、仮想母
分散を標本から得られた標本誤差を応用して推定すると
考えればいい。（主にｎ＝30未満の場合に適応する）

なんと、この何倍かを示す値は仮想母平均からこの不偏的標準偏
差によって得られた仮想母分散の距離（横軸上の数値）が平均か
ら1離れている時、確率密度関数の値（＝確率と等しい）が片側
34％（平均を0として例えば正の方向＝右側）の面積を示す。同様
に1.96の時は47.5％を表すことになる。 ただしｎが30以下の時、
自由度に応じてt分布曲線の形が変わるため、ｔ分布表を使って
95％有意水準の値を求めることになるのだ。



そのデータから得られた情報（標本平均と不偏
標本分散）から、そのｔ統計量（値）=標準偏差の
倍数、がｔ分布に従うとするとそれが起きる確率

t分布表の見方

ⅹ軸とｔ分布曲線に囲まれた確率密度＝求め
たｔ統計量の確率の近似値がわかる。
（列は自由度（n―1）、行は知りたいp値（αと示さ

れていることがある）

そのｔ統計量が起きる確率（ｐ）を知る方法

自由度とは席とりゲームで勝負がつくのは、人数分から1人分ずつ外していくと、鬼
が1人づつ決められるようなものだと思うことにしよう。例えば4人のメンバーがいて、
3人まで分かれば、残りは自動的に決まってしまう（いちいち4人呼ばなくても、3人呼
んだ時点で、残りの人選は決まっているということだ、自由がなくなるんだね

推測統計



平均μ＝５０、分散σ２の正規分布において
Xが６５以下になる確率を求める
１０２（標準偏差σ＝１０）の正規分布は

平均μ、分散σ２（SD2）の正規分布の場合、Xがｘ以下になる確率ｐ
は先のZの式でｘを標準化してZに変換し、ｐ（Z<＝ｚ）に対応させれ
ばよい
これは X～N（５０，１０２） Pr[X<=６５]と表すことができる
６５－５０＝１５ １５/１０＝１．５ Pr[Z<=１．５]＝０．９３３

同様にXが３５以下になる確率は Pr[X<=３５]
３５－５０＝－１５ －１５/１０＝－１．５ Pr[Z<=ー１．５]＝0.067
Pr[Z＞＝１．５] １－ Pr[Z<=１．５]＝1-0.933

このようにどのような正規分布であっても標準化により標準正規
分布に変換すれば任意の範囲の確率計算を行うことができる。



この確率の値をもとめることで、偶然性と比較
して、この事象の成立する確率がデタラメでも
生じる確率（＝危険率ｐという）を表すと考える

この時の確率密度分布曲線の形は、二項分
布が基本となり、繰り返し数が多いとき（経験
的に30回以上とされることが多い）、正規分布
に相似することが知られている。



母平均の値を求めることを点推定という

母平均のとりうる範囲を求めることを
区間推定という

Z統計量の考え方をつかって・・・

重要：母平均は標本平均とほぼ一致するらしいので、そのまま使えるが、母
分散はいったいどうなっているのか、分からない状況で、それでも標本の形
も母集団の形も、確率密度関数という設計図（＝方程式）でほぼ再現できる
と考えれば、その方程式を利用すれば、ある程度、標本の性質から母集団
の様子を予想できるよね。知りたいことのうち、分かっているものと分かって
いないものをはっきりさせて、計算していくと、答えが見つかる



＋ SD/√n × 1,96 + X

９５％信頼区間上限値μ

９５％信頼区間下限値μ

－ SD/√n × 1,96 + X

標本平均X、不偏標準偏差SD、個数ｎから推定される母平均μの取りうる範囲を求める式



3,5,6,2,7,5

ある出来事がとりうるデータとして下のデータが
得られた。

このデータが標準正規分布に従うと仮定した場合
の母平均の95％信頼区間を求めてください。

例題１



次の数値が標本として得られた。

このデータがｔ分布に従うと仮定した場合の母平
均の95％信頼区間を求めてください。

例題２

3,5,6,2,7,5



次の数値が標本として得られた。
このデータの母平均の95％信頼区間を求めてく
ださい。

例題３

3,5,6,2,7,5



12,10,16,20,17

次の数値が標本として得られた。

このデータがｔ分布に従うと仮定した場合の母平
均の95％信頼区間を求めてください。

例題２



2群の解析が必要な場合に使う考え方

（群＝集団＝複数データ）



1群の解析からわかること

データの要約

データからの推測

平均と分散からサンプルの△を見出し、
母集団の△の形を知ること

母平均と母分散（不偏分散）をよく混ぜた汁（確率を一定
にして）から取り出したサンプルから推測すること



1群の解析からではわからないこと

データ間の関係

データからもうひとつのデータの予測

相関や回帰の関係の有無を判断すること
はできない



２群の解析からわかること

データ間の関係

データからもうひとつのデータの予測

相関や回帰の関係の有無を判断することができる。

相関と因果関係は異なる

相関は両想い 回帰は片想い 原因が必ず

結果の前に生じていることが因果関係の第一歩



2群のデータの相同性・相違性を判断することができる

２群の解析からわかること



相関係数の求め方

記述統計



相関係数のイメージ 2群のデータをｘ、ｙ座標上に点描する
＝散布図という（これを調べる）



ｒ（AとBの相関係数）＝
（AB偏差積の平均＝）共分散/

Aの標準偏差×Bの標準偏差

A Aの平均 Aの偏差 平方 平方和 分散 B Bの平均 Bの偏差 平方 平方和 分散 偏差積

1 2.5 -1.5 3 4.5 -1.5

2 -0.5 4 -0.5

3 0.5 5 0.5

4 1.5 6 1.5

5 2.5 7 2.5

AiBiの共分散＝Aiの偏差×Biの偏差 この偏差平方和の平均のこと



相関係数の求め方

STEP1 2群のデータ のそれぞれ 個数を数える＞総和を求める＞平均を求める
＞偏差を求める＞平方和を求める

＞ぶんぶんぶん 平方和の平均を求める（不偏分散ならn―1）
＞ルートをとってぶんぶんぶん 標準偏差を求める

STEP2 2群のデータの順番を意識する。
＞同じ順位のものの偏差を掛け合わせる＝これを偏差積という

＞偏差積の総和を求める
＞偏差積の総和の平均を求める（ｎで割る）
＞これを共分散という

STEP3 分子に共分散 分母に2群のそれぞれの標準偏差を掛け合わせたものを
置く＞これが相関係数ｒ

＞相関係数は2群のデータの回帰係数に等しい。

＞この直線上にデータが存在する率＝一致率＝ｒ2



例題

次の2群のデータの相関係数を求めてください。

A{1,2,3}

B{2,3,８}



母比率の推定

二項分布の性質の利用



𝑃 − 𝑅

Τ√（Ⅴ n）
P統計量=

Pは母比率 Rは標本比率
ここでｖは標本比率の不偏分散＝R（１－R) 二項分布の分散による
ちなみに期待値はｎR、分散はｎRP．-＞N（１-R）＊R
標本比率Rの見当がつかない場合でもR(1－R)は1/4以下になる
Ｆ（ｘ）＝ｘ（１－ｘ）の０＜ｘ＜１の最大値は１/４になる

よく見るとZやｔ
と同じ構造

分子が平均値の

差ではなく比率の
差になっている

正しくはｔ統計量と同じですが、このように覚えておくと
忘れませんよ



＋ SD/√n × 1,96 + R

９５％信頼区間上限値 P

９５％信頼区間下限値 P

－ SD/√n × 1,96 + R



例題１

ある地域で上水道のカビ臭さについて

住民の意識調査を行ったところ、回答

のあった４５０人のうち２００人がカビ臭

さが気になると答えた。カビ臭さが気に

なる人の割合について信頼度９５％の

信頼区間を求めよ。



ｎが十分大きいとき、標本の大きさｎ、標本比率Rの
とき、母比率Pの信頼度９５％の信頼区間は

先の式の通り

A

標本の比率は R＝２００/４５０＝０．４４４
標本の大きさはｎ＝４５０であるから、√（R（１－R)/ｎ
より０．０２３
母比率Pの信頼度９５％の信頼区間は
０．４４４ー１．９６×０．０２３＜P＜０．４４４＋１．９６
×０．０２３
０．３９９＜P＜０．４９０ ∴３９．９％～４９．０％



一休み

魔法陣を作ろう

1 2 3

4 5 6

7 8 9

この数字の組み合わせを行も列も合計する
と同じ数になるように組み合わせてみよう



一休み

魔法陣を作ろう

この数字の組み合わせを行も列も合計する
と同じ数になるように組み合わせてみよう

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

揚輝五五図

ヒント 1対点対称を2個の数字の和を26とする





自然方陣を並べ替えて方陣をつくる。
易換によって不可思議なものが生み出される
易の思想

宋代 3次方陣
孔子以来の落書と結びつく
自然方陣＝１から順番に並べられた正方形のこと
5行5列＞五次の自然方陣
3行3列＞三次の自然方陣

関孝和は奇方を考案した。3次の方陣を三方陣と表した。無限大の

方陣作成方法を示した。幾何の問題を数値処理した。（遺題継承と
算額）

鶴亀算では解けない高次の問題を高次の未知変数を設定して解く
＝高次方程式で解くことを考案した。中算から和算が分離した瞬間
であった。



点字が導入される以前は、文字をいかにして
子どもたちに獲得させるかが課題となりました。
古河がまず着想したのは、凸字・凹字の触読
や、手のひらや背中に書かれた文字の認知
から書字に導く方法でした。古河は、深い洞
察力で盲児や聾児を観察し、子どもたちが必
要とするものは何かを考え、独創的な工夫を
凝らして、つぎつぎと教育方法や教材・教具を
作っていきました。
今日の「自立活動」といわれる分野まで開発、
洗練に工夫の限りを尽くしました。

「算木」

横の短いすじは「１」、たての長いすじは「５」

を表します。この２本の算木で「０」から「９」ま
での数が表せ、この算木を並べることで加減
乗除ができ、かなりの計算が可能です。ただ、
算木は盲教育が始まる以前（江戸時代）から
一般に使われていたといわれています。



数字や演算記号が符号化されており、その符
号がコマに真鍮の鋲や針金で打ち込まれてい
ます。「籌（ちゅう）算盤」とよばれる升目の盤
にコマをはめ込んで四則から平方根の計算ま
で可能です。

「こはぜ算盤」は現在も授業で使用されていま
す。「こはぜ」とは、足袋のかかと部分をとめ
合わせる爪の形をしたものをいいます。





t検定

連続値の統計量であることに注意



ｔ統計量を求め、

この確率密度を用いて偶然では生じそうもない
平均から離れた地点の値を求め、偶然性（でた
らめ）を尺度（定規のようなもの）として、その値
が偶然で生じていると判断するか、偶然では生
じていないと判断する。

これをｔ検定を行うという。



例）

ｔ検定は、「母平均に対する検定」とも呼ばれる。

平均値を対象とした検定手法なのだ！

平均値に対して「平均値が0と異なるかどうか」を

調べたり「リンゴAの大きさの平均値とリンゴBの大

きさの平均値が異なるか」といったグループごとの

違いを検定するのに使われる。



対応のあるt検定

「対応のある」とは、例えば「同じ人・物で2回繰り返し計

測したときの差を見る」といった場合を指す。

例えば、同じ人を対象として「走る前と走った後で、体

温に違いが出るか」といったことを検定するなら「対応

のあるt検定」が使われる。
平均値の比
較であるので

t検定です



平均値の差の検定:分散が等しい場合・異なる場合

平均値の差の検定とは「同じ学年の男性の身長と女性の身長とで、

平均値が異なるか」を調べたり「河口と山の頂で1か月間の気温の

平均値が異なるか」を調べたりするのに使われる。

t検定の使い道としては、これが最も多いかも。

なお、2組のデータ（例えば男性の身長と女性の身長など）の間で

「データの分散」が異なっていた場合と同じ場合とで、計算の方法

が少し変わる。

分散が等しい場合であっても「分散が異なることを仮定したt検定」

を行っても問題なし。

むしろ最近は、常に「分散が異なることを仮定したt検定」を行うこ

とのほうが多い。



分散が異なるかどうかの検定

分散が異なるかどうかによって、検定の方法が変わるため、あら

かじめ「分散が異なるかどうかの検定」をすることがある。

この検定は「母分散の比の検定」あるいは「F検定」と呼ばれる。

ここで「分散が異なるかどうか」をあらかじめ調べておくことで、最

適な手法を選ぶことができる。

もしも、「分散が異なるかどうか」がわからない場合は「分散が異な

ることを仮定したt検定」をそのまま使うのがセオリー。

F値が3を超える場合は（あくまで目安）

「分散が異なることを仮定したt検定」としてWelchのt検定を行う



1群のt検定では、

例えば「このデータの平均値が0と

有意に異なるか」といったことを検
定する。

平均値の判断において



では、どのような条件を満たせば「このデータの
平均値が0と異なるといえる」か。

そして「意味の有る差」が得られたとみなせるか。

そこで「データの平均値が0と異なるといえる3つ
の条件」を考える。
満たすべき条件は以下の3つ。
データの平均値が0と大きく離れている
データの平均値が信用できる（分散が小さい）
サンプルサイズが大きい

平均値の判断において



t値
今まで「データの平均値が0と異なるといえる3つの条件」を見
てきた。

再掲。

データの平均値が0と大きく離れている
データの平均値が信用できる（分散が小さい）
サンプルサイズが大きい

あとはこの3つの条件を数値で表すことができれば、ひとまず
のゴール。

この「3つの条件を数値で表したもの」をt値と呼ぶ。
（t統計量ともいう）



不偏分散
を使う



注意

サンプル数 the number of samples

(標本抽出回数・群数・標本数）

サンプルサイズ sample size

（1回のサンプリングで取得した個体数のこと・
標本個体数・各群のサイズ）



t値とp値

t値が大きければ「平均値に有意な差がありそうだ」とみなすことができる

ことがわかる。

次の問題は「t値がいくらになれば『大きい』と判断できるか」という基準を

定めること。

3を超えれば大きいとみなせるのか、4を超えなきゃダメなのか、難しい。

そこで、「統計的仮説検定」という枠組みが使われる。

t値を計算すると、p値と呼ばれる値に変換できます。

これが確率への変換です。

t値がわかっていれば、p値には（パソコンを使って計算すれば）すぐに変

換できる。



t値が大きくなれば、p値は小さくなります。

そして、p値は基準が定まっています。p値は0.05を下回れば小さいとみな

す、と伝統的に決めている。

というわけで、

t値をp値に変換する

t値が大きければ、p値は小さくなる

p値が0.05を下回るくらい小さければ、t値は十分大きいといえる

上記の3ステップを踏むことで、t値の大小判定ができる。



ここにサンプル
サイズの調和平

均を使う

自由度は
m-1 + n-1
=m+n-2



まず平均の取りうる範囲を求めよう
また分散の取りうる範囲を求めよう

次、行ってみよう！



Final Fantasy のF

T検定の落とし穴
F値をマークせよ

なぜF値の知識が必要か？

連続値をカテゴリーでくくった数値の統計量であることに注意



F検定(等分散の検定)

等分散とは、データのバラツキが等しく分散しているということ
それぞれの群の分布の形が似ている具合が、（相似形の利活用だね）重要なので、
妥協しても、まあこれなら、相似的と考えても
いいかーという加減を示している。

ｔ検定を用いる時や、独立2群の差の検定の場合、

実は・・・二標本t検定には「正規分布である」「等分散である」の二つの条件が必要である。

そのため、たとえ正規分布していても等分散でなければ二標本t検定を使ってはいけない。
（という意見が多数を占めていると考えてください）

この等分散かどうかを調べるためにF検定。
二標本t検定をする前にF検定をして等分散であることを確認する必要がある。

もし、F検定で「等分散でない」と検定されたなら二標本t検定ではなくて

Welch法やMann-Whitney検定（中央値の順番性の検定）で検定しなくてはならない。
（という意見が多数を占めていると考えてください）

・仮説の設定
帰無仮説(H0)：「2群間の分散に差がない(等分散である)」と仮定する。
対立仮説(H1)：「2群間の分散に差がある(等分散でない)」と仮定する。

重要



・F統計量の確率を求める

最初に、それぞれの群の分散s1
2,s2
2
を計算する。

各群の分散を求めることができたなら、

以下の式によってF値を求める。群のうち分子に大きい数値の方をとる。
(F値の最大化を常にしている）

このとき、自由度は分子の自由度df1＝n1-1、分母の自由度df2＝n2-1のF分布に
従う。自由度が求まったらF分布表からFαを求めることができる。

・判定
1≦F≦Fαのとき、P＞0.05となる→帰無仮説を棄却できない→等分散である。
F＞Fαのとき、P＜0.05となる→帰無仮説を棄却する→不等分散である。

https://kusuri-jouhou.com/statistics/bunpuhyou.html


母分散の取りうる範囲を推定する

どうやるのか！

母分散と不偏分散

ある観測対象全体の集合を母集団（population）と呼び、その母集団の中からいく
つかを選んで観測した対象を標本（sample）と呼びます。

いま、標本はｍ個の観測値（x1）から成り、母集団はそれよりも大きいｎ個の観測
値（x2）から成るものとします。ここで、母集団の個の観測値の中で標本に相当す
る個の観測値のみが実測値であり、残りのm－ｎ個の観測値は現実には測定し

ない個々の特性値です。そうすると、母集団のばらつきの度合いを示す母分散
（σ＾2）は母平均をμとすると



となります。一方、標本のばらつきの度合いを示す標本分散（s＾2）については、
母平均（μ）がわからない場合が普通なので、母平均を標本平均（xbar）で推定
することにすれば、母集団と同じようにして

となるが、この標本分散は母分散の推定値にはならないことが統計学的に証
明されており、次式で示されるような不偏分散（V＝ν＾2）が母分散の正しい推定

値となり得るとされています。ただし、母集団のｎ個数は標本のｍ個数に比べて
極めて大きく無限に近いもの（このような母集団のことを無限母集団といいま
す）と仮定します。



標本の大きさがなのに不偏分散の自由度がｍ－１であるのは、不偏分散を求める
式の中のｍ個の観測値（ｘi）がお互いに完全には独立ではなく、どれか一つの観測
値は他のｍ－１個の独立な観測値と標本平均（ｘbar）から求められるからです。

母分散（σ＾2）と不偏分散（ν＾2）の式の中で分母だけがこのように異なるのは一見奇

異な感じがしますが、母集団の大きさｎがかなり大きく、また標本の大きさがと同等ま
でに大きくなった極限では、不偏分散が、母分散にほぼ一致し、母分散の良い推定
値となります。

ところで、大きさの正規母集団から大きさの標本を取り出す取り出し方は

通りあるので、標本平均（xbar）もそれだけの数だけあることになります



この標本平均（）をもとの正規母集団の正規分布曲線の上に重ねて描いてみると下図
のようになり、標本平均（）が描く曲線も母平均を中心とした正規分布曲線となります。



ただし、その正規分布の分散はもとの正規母集団N(μ、σ＾2）の母分散σ＾2の1/ｍになる
ことが知られています。すなわち、標本平均（ｘbar）の期待値、分散、標準偏差はそれぞ
れ

となります。この場合は、母集団がたまたま正規母集団N(μ、σ＾2）であったが、母集団

が正規母集団でなくてその確率変数がどんな分布をしていても、標本の平均の分布
は正規分布になることが知られており、これを「中心極限定理」と呼んでいます。また、
平均と分散が有限な確率分布で最も起こりやすい（エントロピー極大の）分布は正規
分布であるとされており、これを「エントロピー極大原理」と呼んでいます。このように、
実際問題としては、確率変数そのものあるいはその平均がつくる分布は一般に正規
分布であるとみなしてもよいと言えます。



ところが、もしもとの正規母集団N(μ、σ＾2）が無限母集団（n=∞）ではなく大きさNの
有限母集団であった場合には、上記の統計量（期待値と分散）は

この係数N-m/N-1のことを有限補正（finite population correction）と呼んでいるが、一
般にわれわれが標本のサンプリングを行うときには有限母集団の1/10もサンプリング

を行うようなことはまずあり得ないので標本平均（）の分散は無限母集団からのサン
プリングの場合と同じく



であると見なして差し支えありません。また、実際の統計処理においては母集団が
無限母集団である場合も多いことから、有限補正（finite population correction）が
必要になるケースは現実問題としてめったに起こりえないと言えます。

参考サイト：https://staff.aist.go.jp/t.ihara/dispersion.html



母分散の
区間推定



母平均や母比率の推定と同じく

母分散についても区間推定を行うこ
とができる。

母分散の区間推定は
正規分布やt分布ではなく、
カイ二乗分布を使う。



分散は横 横歩きはカイ2乗ー＞カ２ 分布
漂うカニは右が長い（非対称）



母集団が母分散σ2の正規分布に従う時

抽出された標本のサンプルサイズをn、不偏分散をｓ2

とすると、上の式で表される（カイ二乗）が自由度n-1
のカイ二乗分布に従う

分子に自由なサンプルのS二乗と覚えよう



標本の不偏分散s＾2を求める
（抽出した標本の不偏分散）

手順１



使用するカイ二乗分布の自由度を決める

サンプルサイズがｎである場合
自由度がnー1のカイ二乗分布を用いる。

手順２



手順３

の値（偏差平方和を分散で割った値）がカイ二乗分布の95%の面積
（＝確率）の範囲にあればいい
（＝両端の2.5%の面積の部分の極端な範囲に入らなければいい）
ので、
カイ二乗分布表から自由度n-1における上側2.5%点と下側2.5%点
（＝上側97.5%点）を調べる

Χ２統計量＝





ただし、カイ二乗分布は左右対称ではないので、上側
2.5%点と下側2.5%点をそれぞれ読み取る必要がある。
次の図のように例として自由度が9におけるが0.975の値
と0.025の値を読み取ります。





、2015年12月末時点の各都道府県内にある

映画館のスクリーンの合計数のデータから無
作為に10都道府県のデータを抽出したもの
です。

スクリーン数の分布は正規分布に従うもの
とします。このデータから母分散の95%信頼
区間を求めてみましょう。

例題



No. 都道府県 全スクリーン数

1 兵庫 126

2 大阪 224

3 奈良 34

4 岩手 25

5 千葉 199

6 茨城 89

7 福岡 178

8 山梨 14

9 滋賀 38

10 鳥取 11

― 平均 93.8





95%信頼区間を求める

分母と分子を入れ替えます。これにより、不等号の向きが全て逆
向きになります。



見やすくするため、不等号の向きを全て逆向きに戻します。

全てに（ｎー１）ｓ＾2をかけます。 （ｎー１）ｓ＾2は正の
数なので、をかけても不等号の向きは変わりません。



この式を用いることで、母分散の95%信頼区間を求められます。合
計スクリーン数のデータに当てはめると、

となります。標準偏差の場合の信頼区間は√
（ルート）をとることで求められます。





例題２

ある工場で生産される部品Aを10個無
作為抽出し、寸法を測定しました。

測定した寸法から不偏分散を求めると
2.5になりました。このとき母分散の
95％信頼区間はいくらでしょうか。

ただし部品の寸法は正規分布に従うも
のとします。



この問題ではサンプルサイズは10な
ので、n=10です。したがって、自由度
10-1=9のカイ二乗分布を使う。自由
度9のカイ二乗分布において上側
2.5%点は「A」、下側2.5%点は「B」で

あることから、これらの値を母分散の
区間推定の式に代入suru
。

A=

B=







部品Aの母分散の95％信頼区間は1.18から8.33
であると求められました。

母分散の信頼区間を求める上での注意点は次の
2点です。



1.分子は「サンプルサイズn-1」に不偏分散
をかけたものです。「サンプルサイズn」に
不偏分散をかけたものではありません。



母分散の95％信頼区間の式を

と書いてしまいそうになりますがこれは間違いで
す。正しくは次のようになります。分母に注意して
ください。





カイ二乗分布



カイ二乗分布は、z1,z2, …,zkが互いに独立で標
準正規分布N(0,1)に従う確率変数であるとき
に、次の式から算出される自由度kのχ2が従う
確率分布のことです。



χは「カイ」と読みます。自由度が1のとき、カイ

二乗分布は標準正規分布に従う確率変数を二
乗したものに等しくなります。



自由度がのとき、カイ二乗分布の確率密度関
数は次の式で表すことができます。Γ（ ）はガ

ンマ関数を表します。カイ二乗分布の式は非
常に複雑ですが、覚える必要はありません。





カイ二乗分布は「母分散の区間推定」や「適合度
の検定」、「独立性の検定」を行う際に使われる。

カイ二乗分布はt分布と同様、自由度によって形
が異なる分布です。

自由度を変化させた時のカイ二乗分布の形を見
てみます。
次のグラフは自由度（グラフ中ではdfで表示して
います）が1, 2, 3, 5, 10である場合のカイ二乗分
布（黒、赤、緑、青、水色線）を示す。



カイ二乗分布の性質



期待値と分散
確率変数Xが自由度のカイ二乗分布に従っている時、
Xの期待値E(X)と分散V(X)は次のようになります。



再生性
2つの確率変数X1,X2 がそれぞれ独
立に自由度k1,k2 のカイ二乗分布χ２
（k1）,χ２（k2) に従うとき、X1+X2は自
由度k1+k2のカイ二乗分布に従う。



正規分布に従う母集団からの無作為標本

確率変数X1,X2, …, Xkがそれぞれ独立に正
規分布N（μ、σ２）に従うとき、次の式から算

出される値は自由度ｋのカイ二乗分布に従
います



また、この式を展開して得られる次の式の値は自由度ｋ
－１のカイ二乗分布に従います。Xbarは標本平均をS２

は不偏分散を表します。



カイ二乗分布と指数分布の関係

自由度2のカイ二乗分布はλ＝１/２の指数分布と一
致します。



母集団が母分散の正規分布に従う

抽出された標本のサンプルサイズを
n、不偏分散をとすると、

次の式で表される（カイ二乗）が自由
度のカイ二乗分布に従うことを用い
て母分散の信頼区間が計算できる。



母集団が母分散σ2の正規分布に従う時

抽出された標本のサンプルサイズをn、不偏分散をｓ2

とすると、上の式で表される（カイ二乗）が自由度n-1
のカイ二乗分布に従う

分子に自由なサンプルのS二乗と覚えよう

再掲



読み物

正規分布、カイ二乗分布、
t分布、F分布の関係性



自由度 n のカイ二乗（c2）分布は、
n 個の独立な（変数間に相関がな
い）標準正規分布に従う変数 z を

二乗して加え合わせたものです。
式にすると次の通りになります。



カイ二乗分布は二乗値を合わせたものですから、マイナ
スになることはありません。自由度nが大きくなれば、平
均が n 、分散が 2n の正規分布に近づいていくことが保
証されています。

t 分布や F 分布は、カイ二乗分布をその自由度で割った

分布、修正カイ二乗分布をベースにして定義されます。
自由度 r の修正カイ二乗分布に従う変数 Cｒ2 は、次の
式の通りです。



この式により、自由度1の修正カイ二乗分
布は、自由度1のカイ二乗分布に等しいこ
とが分かります。また、Cｒ2 の二乗根 Cｒ は
修正カイ変数と呼ばれます。



自由度 r のスチューデントの t 分布に従う
変数 t r は、標準正規分布に従う変数ｚを
修正カイ変数 C r で割ったものです。



自由度がm と n の F 分布に従う変数 F m,n
は、自由度がm と n の2つの修正カイ二乗
変数 Cm2 、 Cn2 の比です。



ここで、片方の自由度m が 1 の F 分布を
考えてみましょう。自由度 1 の修正カイ二
乗分布は自由度 1 のカイ二乗分布に等し
くなりますから、F1,n は次のようになります。



さらに、自由度 n の ｔ分布の二乗に
従う t n

2を考えてみます。



自由度 1 のカイ二乗分布は標準正規分
布の二乗ですから、F1,n と t n

2は同じ分
布になることがわかります。つまり、t 値
を二乗してやれば F 値になるということ
です。対応のない2群の平均値の差の
両側検定（いわゆる t 検定のことです）
の p 値と、2水準の一元配置分散分析
の p 値が一致するのはこのような理由
によります。



カイ二乗分布
（適合度・独立性の検定）

𝑥2

離散値の統計量であることに注意



χ二乗検定は別名「独立性の検定」とも呼ばれます。

独立とは

「独立→関係がない」
「独立でない→何か関係性がある」

と解釈する。

カイ二乗統計量は、カテゴリーデータの頻度（数の大き

さ）離散値の連関度を求めるときに用いる。



χ二乗検定のステップ

１.データをクロス集計表にまとめる
2.期待度数（もし関係が無かったら、
きっとこうなるだろうという回数）を求める
3.データと期待度数との差を求める
（この差が大きければ、関係ありとみなせそう）
4.χ二乗値を求める
5.χ二乗値をp値に変換する
6.p値を解釈する



ボタン押
した

押さな
かった

合計

青いボタ
ン

70 180 250

赤いボタ
ン

30 120 150

合計 100 300 400

ナースコールにおける、ボタンの色と押されやすさの関係を調べた元データ



ボタン
押した

押さな
かった

合計

青いボ
タン

62.5 187.5 250

赤いボ
タン

37.5 112.5 150

合計 100 300 400

ナースコールにおける、ボタンの色と押されやすさの関係を調べた
期待度数のデータ



元データ（現実値）と期待度数の違いを、
以下の式を使って計算する。

(元データ – 期待度数)2 / 期待度数

例えば青いボタンを押した人の数はこう
なっている。
元データ：70人
期待度数：62.5人

期待度数とは確率の平均のことだった。



ボタン押
した

押さな
かった

青いボタ
ン

0.9 0.3

赤いボタ
ン

1.5 0.5

これをすべて計算したら、以下の表のようになりま
す。

期待度数との差の表



χ二乗値は、単に、先ほど計
算した表の中身を足し合わ
せるだけで計算できます。

0.9+0.3+1.5+0.5=3.2



この値が大きければ大きいほど、期待度数と元データ
が大きく異なっていることになります。

期待度数は「もし関係が無かったら、きっとこうなるだ
ろうという回数」のこと。

なので、χ二乗値が大きければ「ボタンの色と押されや
すさには関係がありそうだ」とみなすことができる。



χ二乗値をp値に変換する

χ二乗値が大きければ「ボタンの色と押されやすさには関係がありそうだ」とみなすこと
ができることがわかりました。

次の問題は「χ二乗値がいくらになれば『大きい』と判断できるか」という基準を定める
ことです。

3を超えれば大きいとみなせるのか、4を超えなきゃダメなのか、難しいところです。
そこで、「統計的仮説検定」という枠組みが使われるわけです。

χ二乗値を計算すると、p値と呼ばれる値に変換できます。
変換です。

χ二乗値がわかっていれば、p値には（パソコンを使って計算すれば）すぐに変換でき
ます。

χ二乗値が大きくなれば、p値は小さくなります。

そして、p値は基準が定まっています。p値は0.05を下回れば小さいとみなす、と伝統
的に決まっています。



『CHISQ.DIST.RT()』というExcelの関数を使います（Excel2007以
前の場合は『CHIDIST』関数を使います）。

『=CHISQ.DIST.RT(3.2, 1)』とセルに入力すると、0.074という数値
が返ってきます。

p値=0.074であり、0.05を上回ってしまいました。

このときは「ボタンの色と押されやすさには、有意な関係があ
るとは言えない」ということになります。

参考



帰無仮説・対立仮説

ここからは、統計学の専門用語の解説となります。

実務に使う際ならば、上述の知識で何とかなりますの

で、難しければ飛ばしてください。

今回の場合は、以下のようになります。

帰無仮説：ボタンの色によって、押されやすさは変わら

ない

対立仮説：ボタンの色によって、押されやすさが変わる

対立仮説は「私たちが立証したい仮説」のことです。

帰無仮説はその逆だと思えばわかりよいです。



なぜ帰無仮説というものをいちいち置くのかというと、その原因が検定の
非対称性にあります。

検定は「帰無仮説が異なっている」ということの立証は
できます。
p値が0.05以下になれば、帰無仮説が異なっていると
みなすわけです。

でも「仮説が正しい」と主張することはできません。違う
ことが言えるだけです。
これを検定の非対称性と呼びます。
なので、「p値が0.05より大きかったので、帰無仮説が

間違っているといえなかった」からといって「帰無仮説
は正しい」とはならないことに注意してください。

違っていることの立証はできますが、正しいことの立証
はできません。
それが統計的仮説検定です。



χ二乗検定は、実はというと、「近似的に」p値を計算し
ていました。

具体的には「χ二乗値をp値に変換する」というあたりの
計算が怪しいわけです。

そのため、サンプルサイズ（調査したデータの数）が
200を超えていない場合は、なるべく使わない方が良
いといわれています。

そんなときに使うのが、Fisherの正確確率検定です。

これは並び替え（数え上げ）検定の一種です。ノンパラメトリック検
定の一種といってもよいです。



シンプソンのパラドクス

読み物



最後に、注意してほしい問題としてシンプソンのパラドク

スを説明します。

これは「関係がないとわかっているデータを足し合わせる

と、なぜか関係があるように見えてしまう」という不思議な

パラドクスです。

データの集計の仕方がずさんですと起こりうる問題です

ので、ぜひ注意してください。

例えば、「データ１」のようなデータがあったとします。

これは、ボタンの押されやすさは、色によって、まったく変

わっていませんね。



ボタン押
した

押さな
かった

青いボタ
ン

10 50

赤いボタ
ン

10 50

ボタン押
した

押さな
かった

青いボタ
ン

10 10

赤いボタ
ン

200 200

A

B



ボタン押
した

押さな
かった

青いボタ
ン

20 60

赤いボタ
ン

210 250

A+B



『p-value = 0.0005554』とあるように、p値が0.05を下回りまし

た。

帰無仮説は棄却され、有意な関係性があるとみなすべきと

ころです。

データ１も、データ２も、ともに「色によって、押されやすさは

まったく変わらないデータ」でした。

けれども、このデータを合わせると、なぜか「有意な関係性」

が現れます。

これをシンプソンのパラドクスと呼びます。

こんな問題があるので、不用意にデータを集計しないように

気を付けなければなりません。



分散
分析

例のF統計量 F値を使って要因の効果があるデータに及ぼす影響について
偶然ではないか判定し、有効な要因をさがす





分散分析（ぶんさんぶんせき、英: analysis of 
variance、略称: ANOVA）は、

観測データにおける変動を誤差変動と各要因

およびそれらの交互作用による変動に分解す

ることによって、要因および交互作用の効果を

判定する、統計的仮説検定の一手法である。



分散分析とは

ある実験をいくつかの条件で行ったとします。ひとつの条件に対し繰り返し

実験を行ったとき、同じ条件であっても、そのなかで平均値からのずれが

多かれ少なかれ生じます。これを実験誤差と呼びます。

また条件を変えて同様の実験を繰り返し行ったとき、条件の違いから他の

条件の場合の平均値との差が出た場合、その差を生み出した要因を因

子と呼びます。

データのもつばらつきは分散として得られるのですが、分散の大小は実験

誤差と因子に左右されるといえます。分散が大きければ散らばりも大きく、

分散が小さければ散らばりも小さいと解釈できます。

分散分析とは、データの持つばらつきが因子によるものよりも実験誤差に

よるもののほうが大きいかを検定し、因子によるばらつきの方が大きけれ

ば母平均に差があるとする検定です。

誤差も正規分布する
と考えているんだな

http://www.gen-info.osaka-u.ac.jp/MEPHAS/express/express3.html
http://www.gen-info.osaka-u.ac.jp/MEPHAS/express/express10.html


データの

分散成分の平方和を分解し、

誤差による変動から要因効果による変動を分離する。

次に、平方和を自由度で割ることで平均平方を算出する。

そして、要因効果（または、交互作用）によって説明される平均平
方を分子、誤差によって説明される平均平方を分母とすること
でF値（分散比のことだね）を計算する（F検定）。

F＝要因効果の平均平方（分散） / 誤差の平均平方（分散）

各効果の有意性については有意水準を設けて判定する。

https://ja.wikipedia.org/wiki/%E5%B9%B3%E6%96%B9%E5%92%8C
https://ja.wikipedia.org/wiki/F%E6%A4%9C%E5%AE%9A
https://ja.wikipedia.org/wiki/%E6%9C%89%E6%84%8F




F統計量の実際の使い方 （注意点は以下の2点のみ）

2群のみのデータ

3群以上のデータ



おまけ

t分布とF分布の関係
標準正規分布N(0, 1)に従うZと自由度nのカイ二乗
分布Wがあり、これらが互いに独立であるとき、次の
式から算出されるtは自由度nのt分布に従う



８ 回帰分析
（重回帰とロジスティック）

生存時間分析



単回帰分析が、1つの目的変数を1つの説明変数で
予測した のに対し

重回帰分析は1つの目的変数を複数の説明変数で
予測しよう というもの。

多変量解析の目的のところで述べた、身長から体重を予測するのが
単回帰分析で、

身長と腹囲と胸囲から体重を予測するのが
重回帰分析です。式で表すと以下のようになります。



ここで、Xの前についている定数b1,b2・・・を「偏回帰係数」といいますが、

偏回帰係数は、どの説明変数がどの程度目的変数に影響を与えているかを直

接的には表していません。

身長を（cm）で計算した場合と（m）で計算した場合とでは全く影響度の値が異

なってしまうことからも明らかです。

各変数を平均 0，分散 1 に標準化して求めた「標準偏回帰係数」を用いれば、

各説明変数のばらつきの違いによる影響を除去されるので、影響度が算出さ

れます。

また偏回帰係数に効用値のレンジ（最大値−最小値）を乗じて影響度とする簡

易的方法もありますが、一般に影響度は「t値」を用います。





多重共線性（マルチコ）

重回帰分析で最も悩ましいのが、多重共線性といわれるものです。マルチ

コともいわれますが、これはマルチコリニアリティ（multicollinearity）の略で

す。

多重共線性とは、説明変数（ここでは身長と体重と胸囲）の中に、相関係

数が高い組み合わせがあることをいい、もし腹囲と胸囲の相関係数が極

めて高かったら、説明変数として両方を使う必要がなく、連立方程式を解く

のに式が足りないというような事態になってしまうのです。

連立方程式は変数と同じ数だけ独立した式がないと解けないということを

中学生の時に習ったと思いますが、同じような現象です。



マルチコを回避するには

変数の2変量解析を行ない相関係数を確認したり、

偏回帰係数の符号を見たりすることで発見し、相

関係数の高いどちらかの変数を除外して分析する

などの対策を打ちます。



すでに確認されている「不健康」のグループと「健康」のグ

ループそれぞれで、１日の喫煙本数と1ヵ月間の飲酒日数を

調べました。下記に9人の調査結果を示しました。

下記データについて不健康有無と調査項目との関係を調べ，

不健康であるかどうかを判別するモデル式を作ります。この

モデル式を用い、1日の喫煙本数が25本、１ヵ月間の飲酒

日数が15日であるＷさんの不健康有無を判別します。





この問題を解いてくれるのがロジスティック回帰分析です。

予測したい変数、この例では不健康有無を目的変数といいま

す。

目的変数に影響を及ぼす変数、この例では喫煙有無本数と飲

酒日数を説明変数といいます。

ロジスティック回帰分析で適用できるデータは、目的変数は2群

のカテゴリーデータ、説明変数は数量データです。

ロジスティック回帰は、目的変数と説明変数の関係を関係式で

表します。

この例題の関係式は、次となります。





関係式におけるa1、a2を回帰係数、a0を定数項といいます。

eは自然対数の底で、値は2.718 ･･･です

ロジスティック回帰分析はこの関係式を用いて、次を明らかにす

る解析手法です。

①予測値の算出

②関係式に用いた説明変数の目的変数に対する貢献度



オッズ比

オッズのZに串刺しと覚えよう



オッズ比（オッズひ、Odds ratio）は、ある事象の起こり

やすさを2つの群で比較して示す統計学的な尺度であ

る。オッズとは、ある事象の起こる確率をpとして、p/

（1−p）の値をいう。確率論のほかギャンブルでも盛んに

使われてきた数値である。オッズと確率には以下の関

係式が成り立つ．



オッズ比の対数をとると確率のロジット

の差に等しい。ロジットはロジスティック

関数の逆関数であって、ロジスティック

回帰分析でもオッズ比は重要な意味を

持つ。

https://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0
https://ja.wikipedia.org/wiki/%E3%83%AD%E3%82%B8%E3%83%83%E3%83%88
https://ja.wikipedia.org/wiki/%E3%83%AD%E3%82%B8%E3%83%83%E3%83%88
https://ja.wikipedia.org/wiki/%E3%83%AD%E3%82%B8%E3%82%B9%E3%83%86%E3%82%A3%E3%83%83%E3%82%AF%E9%96%A2%E6%95%B0
https://ja.wikipedia.org/wiki/%E9%80%86%E9%96%A2%E6%95%B0
https://ja.wikipedia.org/wiki/%E3%83%AD%E3%82%B8%E3%82%B9%E3%83%86%E3%82%A3%E3%83%83%E3%82%AF%E5%9B%9E%E5%B8%B0
https://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90




時間性をもつデータの統計処理

時系列分析

代表例 生存時間分析

＞カプランマイヤー分析
＞COX回帰分析

医療統計、生物統計学において取り扱うメジャーな分析方法



生存時間分析

生存時間分析 (survival analysis) は、イベント (event) が起

きるまでの時間とイベントとの間の関係に焦点を当てる分析

方法である。

生存時間分析は、工学分野においては機械システムや製品

の故障などを、医学分野においては疾患の病気の再発や死

亡などを対象とした研究分野である。

このような故障、破壊、倒産、再発、死亡などのイベントの

生起のことを広義で死亡と呼ぶことにする。



(2) 打ち切り

生存時間に関する試験・観察を行うとき、治療の中止、もしくは転院、試験・観察の

途中で脱落する場合がある。また研究の終了時点では死亡に関するデータが入手で

きないことが起り得る。このようなことを打ち切りが生じた (censoring) と言う。打ち切り

は、左側打ち切り、右側打ち切りなどに分類する場合があるが、ここでは研究を終了

するまでイベントが観測できなかったケースを打ち切りと呼ぶことにする。

Rの生存時間分析のパッケージとして最も広く用いられているのは survival である。

パッケージ survival は、Rをインストールする際に自動的にインストールされる。また

パッケージMASS には gehanという生存時間データがある。データ gehanは、白血病

患者に対する薬の効果を調べるために被験者42名に対して行った臨床試験データで

ある。被験者は薬の投与群と対照群(投薬していない群)のペアによって構成されてい

る。生存時間データの形式および打ち切りに関する情報を確認するためデータフレー

ム gehanの構造を次に示す。













イメージしよう





参考サイトなど

https://logics-of-blue.com/t-test/

https://ja.wikipedia.org/wiki/%E5%88%86%E6%95%A
3%E5%88%86%E6%9E%90

https://istat.co.jp/ta_commentary/logistic

http://www.tamagaki.com/math/Statistics502.html

https://logics-of-blue.com/t-test/
https://ja.wikipedia.org/wiki/%E5%88%86%E6%95%A3%E5%88%86%E6%9E%90
https://istat.co.jp/ta_commentary/logistic
http://www.tamagaki.com/math/Statistics502.html


https://bellcurve.jp/statistics/blog/15364.html

おまけ
エクセルでエラーバー付きグラフを書かせる方法



23 数理モデルのあらまし
この章は、学部生の人は、名前と内容のあらましを知っておけば良いでしょ
う。

院生の方で、専門的に統計学を応用した研究課題に臨む場合には、必ず全
体像をつかんでおいてください。

出典
https://ja.wikipedia.org/wiki/%E6%95%B0%E7%90%86%E3%83%A2%E3%83%87%E3%83%AB



注：数理論理学におけるモデル理論での「モデル」とは異なります。

すうりモデルmathematical modelとは、

通常は、時間変化する現象の計測可能な
主要な指標の動きを模倣する、微分方程
式などの「数学の言葉で記述した系」のこ
とを言う。

モデルは「模型」と訳され「数理模型」と呼
ばれることもある。

静止画を扱ってきたのが、古典的統計手法とすると、動画やVRを扱い、作り出す手法
とイメージできる。



元の現象を表現される複雑な現実とすれば、

モデル（模型）はそれの特別な一面を簡略化
した形で表現した「言語」（いまの場合は数
学）で、

より人間に理解しやすいものとして構築され
る。



構築されたモデルが、元の現象を適切
に記述しているか否かは、数学の外の
問題となる。

したがって、モデルの有効性は、数学の
問題ではない！（統計学で何度も強調し
てきたことと同じ）

で、原理的には論理的には真偽は判定
不可能である。人間の直観によって判定
するしかない。



どこまで精緻にモデル化を行ったとしても、
得た観察を近似する論理的な説明に過ぎ
ない。

数理モデルは、対象とする現象や、定式化
の抽象度などによって様々なものがある。



数理モデルの使用

数理モデルは、自然科学においてのみではなく、社会科学や人
文科学においても用いられる。

数理モデルが用いられている分野を網羅することは難しいと考
えられるが、例えば、物理学、工学、生物学、経済学、社会学、
心理学、計算機科学、生態学、神経科学、分子生物学、生物統
計学、免疫学、地球物理学、天文学、電気回路、機械工学、航
空工学、気象学、言語学、計量文献学、伝染病感染予測、オペ
レーションズ・リサーチなどがある。

近年はコンピュータの性能の向上により、複雑な数理モデルでも
そのふるまいをシミュレーションによって見ることができるため、
様々な分野で用いられるようになっている。数理モデルは、対象
とする現象や、定式化の抽象度などによって様々なものがある。



モデルとは

モデルとは、対象とするシステムを簡略化して、その本
質*を表したもの

システムを理解するために用いられる

*ここで本質の意味が問われるが、特徴を最も合理的
に（短く、少なく）表すもの と考えるとわかりやすい。

地球のモデルとしての地球儀、建造物のモデルとしての設計図、人生のモデルとして
の小説、価値のモデルとしての金銭など様々なものがあげられる



モデルが現実のシステムの興味がある部分の性質を残していれば、モデルを考察する
ことによってシステムに対する理解（あるいは解釈）を行うことが可能になったり、現実の
システムのふるまいの予測を行うことができるようになる。

例えば、実際に歩き回らなくても、地図を見れば行き方がわかるし、宇宙に出なくても地
球の形状や各国の分布を知ることができる。

モデル化とは、興味のある本質を残して対象を大幅に簡略化する
ことにより、理解可能にすることである。

ただし、モデルは対象そのものとはやはり別物であり、簡略化によって必然的に対象の
持っている多くの性質を失ったものとなる。

（モデルが何らかの現象をとりこまないことを「捨象」と言う）。



数理モデル

特に数学によって記述されたモデルのことである。

モデルという言葉に含意されているように、対象とのズレ（特に近似や抽象化）が意
識されていることが多い。モデルの正当性が実験や観察などによって裏付けら
れ、非常にうまく行っている事が確かめられている場合は「理論」と呼ばれるよ
うになることもある。

もっとも、「理論」という場合、しばしば独自の概念の使用なども含んだより包括的な体
系となる。(例えば、ボーアによる水素原子の構造を説明する理論は普通"Bohr's 
model"あるいは「ボーアの原子模型」と呼ばれるが、シュレーディンガーによる量子力
学の基礎方程式はモデルとは呼ばれない。

モデルから演繹できる法則の広さが重要である。



簡単な例

「A君が歩けば歩くほど前に進む。歩幅が広いほど前に進む。」
という現象を

（距離）＝（歩幅）×（歩数）
という数式で表せば、これは数理モデルである。

この数理モデルは、積という数学的な概念によって記述されている。

このように、現実の対象を数学の中に写像する過程を「モデル化」という。
この数理モデルにおいては、もはやA君が何を話しているのか、どんな表情をしているの

か（気持ち、感情）、どちらの方角に向かっているのかといったようなことは全て捨象され
てしまっている。

しかし、世界の数的な側面についてこの式（モデル）を用いて推論をすることは、A君の歩

く様子を眺めてそれを行うよりも極めて容易であり、、数学の知見により、例えば、歩幅
が50cmで1,000歩歩いたら500m進むということがわかるのである。

またさらに言えば、10 km歩いてきたA君の疲労困憊した顔を見た時に、この数理モデル

を用いれば、計算によって彼が2万歩歩いたことを算出し、「なるほどな（なるほど
疲れるわけだ）」と理解することもできる。



ばねの振動の例

ばねは、自然長からの伸びが小さい範囲では、伸びた長さと戻ろうとする力が比例す
ることが知られている（フックの法則)。

力＝（比例定数）×（伸び）

(F=-kx )
となり、ばねという自然現象が数理モデルに対応づけられる。ばねに小さなおもりがつ
いている状況をニュートンの運動の法則

を用いて表せば、

となる。この数理モデルは、数学的には二階線型微分方程式であり、強力な理論が得
られている分野である。数学的な考察により、運動が三角関数で表されることが直ちに
わかる



モデルの普遍性

いったん抽出された数理モデルはもともと対象とされた現象を超えて、遥かに広い
範囲の対象を記述することが多い。例えば、コンデンサとコイルを接続した電気回
路の電圧の発展を記述する微分方程式は、上記のばねの振動の方程式と全く同
一のものになる。

他にも、熱拡散におけるフーリエの法則、電流におけるオームの法則、液流におけ
るハーゲン・ポアズイユの法則、粒子の拡散におけるフィックの法則は全て

の形をしており、数学的には全く同一のものである。

なお、これらの方程式が似た形をしているのには理由がある。これらの物理法則が得
られるのは、どれも平衡点から少しだけずれた点における法則としてである。系のダイ
ナミクスがたとえ非線型であっても、平衡点からほんの少しだけずれた点においては、
ずれに対して線型な応答が得られると期待できる系における現象であるからだ。非線
型力学的にいうならば、平衡点における発展方程式のヤコビアンによって、その近傍
の発展は決まる。



自然界の階層性と数理モデル構築の可能性

一般に物理学では、ミクロな世界の第一原理法則にしたがっ
て相互作用する粒子がシステムの時間発展を決めていると
考えられている。

しかし、日常の世界に現れるほとんどの考察の対象は、素粒
子あるいは原子が莫大な数集まったシステムであり、第一原
理に基づいてモデルを構築したり、計算を行うことは不可能で
ある。

このことから素朴に考えれば、我々が何かの現象を理解しう
るということは絶望的に思える。

ところが・・・

物理学では、ミクロな世界の第一原理法則にしたがって相互作用する粒
子がシステムの時間発展を決めている



世界が第一原理に従って発展しているという仮定から考えれば明らかでは
ないことに、

自然界には物理的なスケールの違う階層からなる階層構造が
あり、それぞれの階層においてなんらかの秩序が見られること
が知られている（素粒子、原子、分子、高分子、固体、流体、細胞、組織、
器官、群れ、社会、習慣、流行、伝染、生態系、地形、天候、惑星系、銀河、
銀河団、宇宙、など）。

そもそも、われわれ人間のような、外界に対する認識や解釈を行う知的能
力を持った生物がいるということが世界がある程度の法則性を持つことの
証拠である。

そこで、一般に特定の階層に注目し、そこになりたつ普遍的な法則を推定
しようという試みがなされ、様々な学問が存在する。

1.物理的なスケールの違う階層からなる階層構造を認める
2.その中での秩序の単位でそれぞれの学問が成立する。



ミクロな世界の第一原理法則

第零法則は、温度が一意に定まることを示している。

第一法則は、閉鎖された空間では外部との物質や熱、仕事のやり取りがない限り、
エネルギーの総量に変化はないということを示している。

第二法則は、エネルギーを他の種類のエネルギーに変換する際、必ず一部分が熱
に変換されるということ、そして、熱を完全に他の種類のエネルギーに変換すること
は不可能であるということを示している。つまり、どんな種類のエネルギーも最終的
には熱に変換され、どの種類のエネルギーにも変換できずに再利用が不可能にな
るということを示している。なお、エントロピーの意味は熱力学の枠内では理解しに
くいが、微視的な乱雑さの尺度であるということが統計力学から明らかにされる。

第三法則は、絶対零度よりも低い温度はありえないことを示している



平衡熱力学においては、非平衡状態そのものは扱えないものの、平衡状態から別の
平衡状態への遷移については扱うことができる。しかし (現在の) 平衡統計力学では、
こうした状態間の遷移に言及することはできない



https://upload.wikimedia.org/wikipedia/commons/c/c2/Brownian_motion_large.gif



ブラウン運動（ブラウンうんどう、英: Brownian motion）

とは、液体や気体中に浮遊する微粒子（例：コロイド）
が、不規則（ランダム）に運動する現象である。

1827年、ロバート・ブラウンが、水の浸透圧で破裂し
た花粉から水中に流出し浮遊した微粒子を、顕微鏡下
で観察中に発見し、論文「植物の花粉に含まれている
微粒子について」で発表した。



この現象は長い間原因が不明のままであったが、1905年、アインシュタイン

により、熱運動する媒質の分子の不規則な衝突によって引き
起こされているという論文が発表された。

この論文により当時不確かだった原子および分子の存在が、実験的に証明出
来る可能性が示された。後にこれは実験的に検証され、原子や分子が確かに実
在することが確認された。

同じころ、グラスゴーの物理学者ウィリアム・サザーランドが
1905年にアインシュタインと同じ式に到達し、ポーランドの物理
学者マリアン・スモルコフスキー（英語版）も1906年に彼自身に
よるブラウン運動の理論を発表した。



数学のモデルとしては、

フランス人のルイ・バシュリエは、株価変動の確率モ
デルとして1900年パリ大学に「投機の理論」と題する
博士論文を提出した。

今に言う、ランダムウォークのモデルで、ブラウン運動
がそうである、という重要な論文であるが、当時のフラ
ンスの有力数学者たちに理解されず、出版は大幅に
遅れた。



ブラウン運動と言う言葉はかなり広い意味で
使用されることもあり、類似した現象として、

電気回路における熱雑音（ランジュバン方程
式）や、希薄な気体中に置かれた、

微小な鏡の不規則な振動（気体分子による）
などもブラウン運動の範疇として説明される。



数理モデルを構築するということは、注目しているシステ
ムに関する現象論的な法則を数学的にモデル化すると
いうことである。

つまり、数理モデルを構築する際は、そこに下位の階層
の構造を知らなくても立てられる独立な法則が成り立っ
ていることを信じているということになるだろう。

必然的にシステムを目的のスケールにおいてよく記述す
るマクロな変数の導入が必要



数理モデルに導入されるそういった変数の数は少なければ少ないほどより単純で
シンプルな現象への理解へと導く。

こういった観点から、大成功していると思われるのは、熱力学、流体を記述するナ
ビエ-ストークス方程式、物性論における平均場近似などがあげられる。

また、量子論が知られた今となれば、巨視的な極限としてニュートン力学を現象
論と呼ぶことができなくはない。

また、一つ下の階層における法則が知られている場合には、それを構成要素とし
て組み立てたモデルがよく作られ、さらにその下位の階層における構造は捨象す
る（例えば、気体分子運動論、電気回路、ニューラルネットワークなど）。



しかし、生体や社会のように対象が複雑で、階層

間の法則の分離の様子が自明でない場合や、ス

ケールが一つ下の要素を考えるだけで要素数の多

さやその多様性などにより変数が爆発的に多くなっ

てしまうものとなれば、

適切な変数の設定やモデル化ができるかどうか

はもとより、人間に理解できる程度に単純で普遍的

な現象論の存在を仮定すること自体に議論がわか

れるところである



遅い変数の存在と発展方程式の縮約可能性

前項と関係することでもあるが、系の発展を少数の本質を表す

変数によって記述できることの正当性は、その系に変化が速い変
数と遅い変数が共存することによることが多い。

物理学ではこれは断熱近似、隷属原理などとよばれ、数学的に

いえばこれは中心多様体上での発展方程式をみいだすことに対
応する。

前項との関係においては、しばし様々な系において系のミクロ

な現象がマクロな状態よりも速く変化することが多いことによって、
ミクロを無視したマクロな変数のモデルをたてられることが対応す
る。



コンピュータシミュレーション

対象となる現象が大規模で人手による解析が困難、あるいはナビエ-ストーク

ス方程式のようにモデルの解を解析的に得られない場合は、コンピュータによ
るシミュレーションによって解を求める。代表的なアルゴリズムとして、オイラー
法、ルンゲ＝クッタ法、有限要素法、モンテカルロ法等がある。コンピュータの
性能向上によって、扱える数理モデルの幅が大変広まった。

利点
現象の理解

上述したように、数理モデルを構築することによって得られることは、まずは現
象の理解があげられる。また、数学的に表現することによって、扱いが容易に
なったり、数学の知見を活用することができる。



実験をしないで現象のふるまいを予測する

適切な数理モデルが得られれば、様々な条件化における現象を定量的に
予測できるようになる場合が多い。現実のシステムを用いて観測を行う必
要がなくなれば、そのために必要な労力・損失を省くことができる。

何かの計画において、実現したい状態をもたらす条件を検討する場合にも
有用である。ニュートン力学を用いて計算した結果によって人工衛星を打
ち上げられることがこれにあたる。感染症のパンデミックに対して、交通規
制、隔離、ワクチン配布などの様々な戦略をどう用いればいいのか、といっ
たシミュレーションも行われている。臨界前核実験では、実際に核爆発を
起こさず、数理モデルのパラメータ決定のみが目的とされる。

近年はコンピュータの進化によって、莫大な変数を持つような複雑な数理
モデルに対しても、シミュレーションにより解の振る舞いを実用的な時間内
に求めることが可能になりつつある。例として、IBMによる大脳皮質コラム
のシミュレーションBlue Brainプロジェクトや、地球シミュレータによる温暖化
の予測などが挙げられる。



評価基準

本質の抽出

一般的には、対象とするシステムの本質的な特徴を現すことができて、かつできる
だけ少ない変数を抽出したものがよいモデルとされる。

適用範囲

普通、数理モデルには適用できる範囲が決まっており、その範囲が広いものほど
より優れたモデルと言える。例えば、ばねの振動におけるフックの法則は、伸びが
あまりに大きくなると適用できなくなる。ばねを思いっきり引き伸ばせば元に戻らな
くなるのは経験上明らかである。また、ニュートン力学は、人間が一般的に捉えら
れる範囲では十分な正確さを示すが、原子のレベルの大きさの世界や光速度に
近い速度では実際の物理現象とのずれが大きくなり、そのような環境下では適切
なモデルではない。一方、定性的にだけ説明して、何にでもあてはまるが、結局メ
タファーの域を出ないモデルは評価されないこともある。



予測可能性

これは前述の適用範囲を時間軸において考えば当然含まれることではあるが、こ
れまでの観測結果から構築した数理モデルによる、今後の観測データの予測能力
はその数理モデルの評価基準になる。どのような数理モデルも、その数理モデル
内の自由なパラメータをもつものである。例えば、ニュートン力学において、重力定
数は9.8であるというのは実験における観測によって推定されるものであるし、ある

自然言語処理アルゴリズムが各単語の頻度を用いるとして、例えば「ワロタ」という
言葉の頻度をしめすパラメータも実験によってきまる。これらの観測によって決まる
パラメータを推定したのちに、未知のデータに対する予測の正確性を評価すればそ
のモデルの評価基準となる。

実験データとの照合

当然、実験データとの定量的な一致・予測能力があるものは優れたモデルとされる。
実験による検証に耐えられなければ、モデルの妥当性が疑われる。



数学的扱いやすさ

扱いやすいものを得るのがモデル化の大きな理由である。数
理モデルの場合は、数学的な扱いやすさが重要になる。例え
ば、ある方程式によりモデル化を行った場合に、その解が解析
的に得られるようなものは、数学的に大変性質がよいものだと
いえる。

方程式が非線型の場合は一般にはこれは困難だが、具体例と
しては、非線型なリズムを持つものが多く同期しあう現象を
扱った蔵本モデルは要素数無限大の極限において解が解析
的に得られる。解析的に得られない場合は数値解析によって
近似解を求める。



数学的な分類

線型か非線型か

数理モデルは多くの場合、変数を含んでいる。この変数に作用する演算子が線型であ
る場合は、モデルは線型だといわれる。線型な場合、重ね合わせの原理により、系の
発展を独立なモードに分解して考えることができる。

要素還元的な方法が非常にうまく行くのは、モデルが線型であり、システムのふるま
いが要素のふるまいに分解することができる線型な場合である。その基礎には線型演
算子のスペクトル分解がある。例えば、弦の振動や熱の拡散過程の場合、熱の分布
をフーリエ変換し、それぞれの波数のモードに分解すれば、各々独立に方程式に従う
ので相互作用を無視することができる。たくさんのばねとおもりをつなげたような系を
考えてもやはり線型連立常微分方程式となり、同様である。

一方、非線型の場合は、方程式が非常にシンプルな場合でも系の発展にカオスなど
の複雑な状況が生じることがあることが知られている。非線型の微分方程式は一般的
には解析的に解けない。(cf.可積分系、ソリトン)



決定論的か確率過程か

システムの発展を記述するときに、その発展が直前の状態によって完全に決定される
ような決定論的な枠組みを用いるか、発展に確率的な要素を取り込むかの違いがあ
る。常微分方程式や偏微分方程式によるモデル化は決定論的なものにあたる。（解の
存在と一意性が保障されているような）微分方程式で記述すれば、状態の発展は初期
値のみによって決まる。一方、マルコフ過程、確率微分方程式やマスター方程式での
記述は、確率的な過程を取り込む場合にあたる。

動的か静的か

時間による発展を取り込むか取り込まないかで、動的か静的かに分類される。例えば
典型的な動的なモデルとして、微分方程式や差分方程式によるものが挙げられる。ま
た静的なモデルとして、系の状態を最適化問題の極値として与えるものを指し示すこ
とができる。



用いられる数学

常微分方程式、差分方程式、偏微分方程式、積分
方程式、幾何学、確率過程、統計学、グラフ理論、
ゲーム理論、最適化問題、マルコフ過程、マスター
方程式、ベイズ統計学などの数学が用いられるが、
それには限らない。



https://biostat-hokudai.jp/seirmodel/

感染症数理モデル
SEQUENTIAL SEIR MODEL

SEIRモデルは、

免疫をもたない者 Susceptible
感染し、潜伏期間中の者 Exposed
発症者 Infectious
回復者（免疫獲得者） Recovered

という順番に人が遷移していく過程を常微分方程式で
モデル化したもの



日本語による詳しい説明は、以下を参照のこと

西浦先生、稲葉先生が統計数理という雑誌に過去にレビューした論文
（https://www.ism.ac.jp/editsec/toukei/pdf/54-2-461.pdf）

東大のヒトゲノム多様性研究室（http://www.bs.s.u-tokyo.ac.jp/~humgendiv/）
Wikipedi
a（https://ja.wikipedia.org/wiki/SEIR%E3%83%A2%E3%83%87%E3%83%AB）

https://www.ism.ac.jp/editsec/toukei/pdf/54-2-461.pdf


最初にS,E,I,Rの4つの状態に存在する人数を指定し、

遷移の速さを定める、

R0, 基本再生産数（自然状態で1人の感染者が平均的に何人に感染させる
か）
average incubation period, 平均潜伏期間（Eになった者が次のIに遷移する
までの平均的な期間）

average infectious period, 平均発症期間（Iになった者が他者へ感染を引き
起こす期間）

を定めることで、将来予測を行える仕組み



ここで、潜伏期間中は他者に感染させることなく、発症期間の
最中だけ他者に感染させうるという定義としています。

ちなみに、上記3つが導けるなら別のパラメータでも可能です。

また、集団において死亡者と出生者がいることによって、人が
入れ替わることは無視しています。



SARS-CoV-2に関して、Lauer先生らの論文
（https://www.ncbi.nlm.nih.gov/pubmed/32150748）によると、incubation period
（感染から症状発現までの期間として定義）は中央値で5.1日です。

Eの人がIに遷移する期間の分布は指数分布に従うと考えることは自然ですから、
incubation periodの中央値が5.1日ならば、平均値は7.35日となります。

ヨーロッパ疾病予防管理センターのQ&A(https://www.ecdc.europa.eu/en/covid-
19/questions-answers)ではinfectious periodは症状が出る人ならば、症状発現の
1,2日前からスタートし、7～12日かかると説明されています。

ということで、SEIRモデルを作るにあたって、平均潜伏期間は6日程度、平均発症
期間は10日程度をwebツールでのデフォルト値と定めています。

もちろん、症状がみられたら自主的に隔離する方が多いでしょうから、平均発症期
間は10日よりもっと短い設定でいいかもしれません。



社会的隔離(Social distancing)の影響

感染症を放っておいた場合に一人からR0人だけ感染者を生

むことになるわけですが、対策をとることで実際に感染者の
発生を抑えることができます。

例えば、はしかを引き起こす麻疹ウイルスのR0は10以上とさ

れる、とてつもない感染力を示しますが、集団ワクチン接種
により免疫をもたない者（S）を強制的に免疫獲得者（R）に変
えてしまうことで、SからEへの遷移を減らすのです。

SARS-CoV-2について、飛沫感染が感染経路と概ね分かって
きたため、マスク着用や他者との距離を2m以上とる社会的
隔離を現在可能な対策として行っています。



今は単純に、ある時点における1人の感染者が平均的に何人に感染させるかを表
す実効再生産数Rtは、基本再生産数に接触頻度を削減（社会的隔離）できなかっ
た割合を乗じたものとして考えることにします。例えば、R0は2.5だが、8割接触を削
減できたら、2.5×(1-0.8)=0.5がRtとなります。

緊急事態宣言が発令されると、接触頻度は、数日かけて削減される経過をたどっ
ています。何の指標を用いるかはさておき、webツールでは削減割合を入力するこ
とで、新規感染者数、入院中の数を図示します。1行が1日を表します。

さらにある人数の接触頻度を減らした場合に、検討する期間中に生じる感染者を
何人減らせるかが計算されます。Sの初期値に対するNumber of additional 
reductionsの割合を、削減割合に加えた場合の結果を示します。負の値を入力す
ると、逆に接触頻度を増やしてしまった場合の結果を示します。

ちなみに、googleが人の移動量データを全世界、日本なら都道府県別に時系列で公開し
てくれています（https://www.google.com/covid19/mobility/）



使ってみる

https://biostat-
hokudai.shinyapps.io/seir/



このツールで実効再生産数を求めることはできません

感染症数理モデルで将来予測をするためのツールであって、現在報告されている検査
陽性者数等のデータを読み込ませて解析する、ということはできません。あくまで、何か
しらの方法で得たパラメータ値から、将来の人口がどうなるのかを表すツールです。

接触頻度の削減割合の部分
本ツールにおいては、基本再生産数×（100% －接触頻度の削減割合[%]）/100%したも
のが実効再生産数に相当します。削減割合を1行増やすごとに1日分さらに予測するこ

とができます。一見ややこしい入力方法ですが、その分、様々なシナリオを作って比べ
ることができるので、このような仕様にしました（sequentialと言っている部分です）。

じゃあ実効再生産数ってどうやって求めるのよ？
実効再生産数（effective reproduction number；効果的再生産数とも）は1人の感染者が

平均何人に感染させるかを、（カレンダー時間だけでなく、感染の世代のような他の定
義によるものでもよい）時点に応じて求めるものです。時点ごとに異なる値をとりうるの
で、実効再生産関数と呼んでもいいと思います。

非常に簡単な状況として、人が感染したら、必ず翌日の1日間だけ誰かに移す、かつ、

感染者は瞬時に全員特定できるとします。すると、実効再生産数は前日の感染者を分
母に、今日の感染者を分子においた比として点推定値は求められます。生成される
データの不確実性（精度）を表す必要があるので、推定した信頼区間を併せて示します。



ただ、実際には、感染者がいつ、何日間にわたってうつすのか、また人によってうつしう
る期間も異なるはずです。陽性と判断されるまでの期間や陽性と判断されないケース
も考慮する必要もあるでしょう。他にもデータの生成過程から考慮しなければならない
ことはたくさんあると思います。完全に正確な値を1点で求めることは不可能ですから、

ある程度、感染過程を考慮して実効再生産数に求めるにとどまってしまいます。例えば、
感染してから他の人にうつすまでの平均日数が6日とするか7日とするかでも、その日

数のばらつき（標準偏差）がいくつであるかに応じて、求まる実効再生産数は変わりま
す。このように計算するにあたっての仮定を変えて解析する「感度解析(sensitivity 
analysis)」は観察研究で常に求められる内容です(STROBE statement; 
https://www.strobe-statement.org/)。実際に計算してみたい！ということでしたら、いく

つかの計算方法であれば、以下に示すツールで可能です（申し訳ございませんが、使
い方は論文等をご参照の上、各自でお願いします）。

Cori先生らのExcelツール（京大・山中先生のwebでも使われていた）
https://academic.oup.com/aje/article/178/9/1505/89262
Thompson先生らのwebツール
https://shiny.dide.imperial.ac.uk/epiestim/



実効再生産性今後も重要な指標となります。COVID-19のウイルス排出の論文が出てい
ます。山中教授のHPに乗っていますので、確認下さい。そこでは、潜伏期間、ウイルス
が発症前２日前から増えて、発症後７日の間で減少すること。

シリアルインターバル（発症から次の人が発症するまでの期間）を５．８日としています。
初期の中国型ウイルスかもしれませんが、参考にして下さい。

また、山中教授のHPに、アメリカのエクセルソフトでの有効再生産数算出の紹介もあり

ます。合わせて、見て下さい。最後に、個人的に気にしているのが、無症状感染者の扱
いです。例外対応するのは、発症者と同等以上居るのので、難しいと思います。

https://www.nature.com/articles/s41591-020-0869-5
https://academic.oup.com/aje/article/178/9/1505/89262



R0は感染症そのものが1人から平均何人にうつす能力があるかを表現したものです。

実効再生産数は、十分に感染が広まったり、人々が対策をとったりすることでその
時点における当該感染症が1人あたり平均何人にうつるかを表現したもので
す。

https://ja.wikipedia.org/wiki/%E5%9F%BA%E6%9C%AC%E5%86%8D%E7%94%9F%E7
%94%A3%E6%95%B0



「基本再生産数 R0 は、環境因子や感染集団の行動による影響も受けるため、病原体
に対する生物学的な定数ではない。」
というわけで、病原体に固有の、万国共通のR0があるわけではなく、
「基本再生産数 R0 の値は通常、数理モデルから推定される」「推定値は使用されたモ
デルや他のパラメータの値に依存する」
とのこと。

また、

「文献における値は特定の文脈においてのみ意味があり、古い値を使用したり、異なる
モデルに基づく値を比較したりするべきではない」
ともあり、当初日本のデータがないなかでは先行研究のR0←2.5を使ったとしても、その

後は、日本あるいは地域のデータの蓄積に応じて、あるいは気象条件など時期に応じ
て、基本再生産数R0は推定ないしカリブレーションして更新されていくべきものではない
のでしょうか。A：R0は感染させる強さの初期値なだけなので、考える起算日や状況に応
じて新たに推定した値でモデルを作り直すような場合に、異なるR0を用いるべきです。

infectious periodは症状が出る人ならば、症状発現の1,2日前からスタートし、7～12
日かかると説明されています。ということで、SEIRモデルを作るにあたって、平均潜伏
期間は6日程度、平均発症期間は10日程度をwebツールでのデフォルト値と定めま
した。
Eのstateにいる間は人にうつさない、Iのstateにいる期間は人にうつす、としてご利用
ください。



より厳密には、一日とは限らず、特定の時点でと小生は理解しています。マスコミで公表
されている値は、1日間の積分値ではないでしょうか。
たとえば、論文 [ref.1]（未査読のようですが)での定義は、
“The effective reproduction number R(t) is defined as the number of secondary cases that 
an individual, becoming infectious at time t, will produce over time.”
また、次の論文[ref. 2]も次のように定義しています。
“The effective reproduction number can also be specified at a particular time t, presented 
as R(t) or Rt, which can be used to trace changes in R as the number of susceptible 
members in a population is reduced (…). ”

ここで、公開されているコード中のR_tは、実際には、基本再生産数(R0)ですね。
server.Rで、次のように R_tを定義し、
‘R_t <- input$R_t '
また、ui.Rで、次のように、入力ペインのラベル R0 の変数を R_tとしていますから。
'numericInput("R_t", label = h5("R0"), value = 2.5)'
さらに、Server.Rでの計算式で、

dS <- -R_t/meani … などとされていますからそういえます。

マスコミで、「実効再生産数 1 人を切る」ことについて解説していますが、実際には、一日
当たりだと思うのですがいかがでしょう。



マスコミで、「実効再生産数 1 人を切る」ことについて解説していますが、実際には、
一日当たりだと思うのですがいかがでしょう。

reference:
[1] A. Arenas et al., ‘Derivation of the effective reproduction number R for COVID-19 
in relation to mobility restrictions and confinement’, medRxiv, p. 
2020.04.06.20054320, Apr. 2020, doi: 10.1101/2020.04.06.20054320.
[2] P. L. Delamater, E. J. Street, T. F. Leslie, Y. T. Yang, and K. H. Jacobsen, ‘Complexity 
of the Basic Reproduction Number (R0) – Volume 25, Number 1—January 2019 –
Emerging Infectious Diseases journal – CDC’, doi: 10.3201/eid2501.171901.

実効再生産数の定義が曖昧に報道されています。一感染者があらたに感染させる
数とされていますが、実際には一日当たりに感染させる数であるとおもいます。明
確に、ご説明されることがリスクコミュニケーション上重要でしょう。

感染率と回復率、再感染数の関係の理解に混乱がありました。質問を撤回します。



コメントの内容にほぼ同意です。そもそも濃厚接触による伝播が強く考えられ、実際に病院
や老健施設での大規模クラスターが発生していることから、1人が何人に感染するかの分布
自体がPoisson分布のような類の分布からはoverdispersionしていますし、接触の削減割合な
んて完全には定量化できないと思います。もちろん、単純なSEIRモデルでは隔離の影響、集

団の流入、流出も考慮できないと思います。不顕性感染が少なからずいると指摘される
SARS-CoV-2感染では、Eに移行する定義を陽性確定なのか感染なのかで話は大きく変わると
思います。個人のtwitterにおいて、「多分、西浦先生たちのグループはこうした古典的数理

モデルをもはや使っていないと思います」と本ツール公開当初に感想を述べましたが、その
根拠は上述の通りです。

とはいえ、疫学理論をやっている身としては、現実世界を抽象化・簡略化したものがモデル
であり、間違っているから全く使えないとは考えずに、感度解析を行って多角的な検討をした
いと思うのです。その議論の土台となるべく、簡単な数理モデルに親しんでいただき、その特
徴を感じてもらって、次の発展的な議論に進んでもらえたらなという思いで公開しています。

単純なSEIRモデルで状況を単純化して、傾向性を見る事も必要と思います。(相対比較)
しかし、国の緩和の判断基準とするのであれば、式で使用する値(基本再生産数、実際
の感染者など)が十分に実態に合っていることが必要と考えられます

実効再生産数を調査感染曲線から求めるR Package が存在します。
https://wp.me/p264xJ-Nx



https://club.informatix.co.jp/?p=140

感染症流行を予測する数理モデル SIR｜微分方程式によるシミュレーション
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父が数学者ヨハン・ベルヌーイ（1667-
1748）、伯父が数学者ヤコブ・ベルヌー
イ（1654-1705）、ダニエルの兄弟もみ
な数学者というベルヌーイ家に1700年2月
8日に生まれたのがダニエルです。
13歳でスイス・バーゼル大学に入学、16
歳で修士号を取得するも、父ヨハンの反対
で数学の道に進むことができず医学を学び、
呼吸のメカニズムの研究で博士号をとって
います。
流体力学のベルヌーイの定理（1738年）
で有名なダニエル・ベルヌーイは数学者と
して知られていますが、実は早い段階から
医学との接点がありました。
結果として数学者ダニエルの研究対象は、
医学、生理学、植物学、天文学、物理学、
流体力学、海洋学、経済学と多岐にわたる
ことになります。
ダニエルは天然痘死亡率の寿命への影響に
関する研究論文(1760年）の中で次のよう
に述べています。

Daniel Bernoulli（1700-1782）



ここに「smallpox（天然痘）のravage（損害）のevaluation（評価）」とあるのがわかりま
す。

紀元前1100年頃の天然痘の記録があることからすると、20世紀まで三千年以上人
類は天然痘と闘ってきたことになります。

WHO（世界保健機関）が地球上からの天然痘絶滅宣言を発表したのが、1980年5月
8日のことです。



SIR 数理モデル
1927年、生化学者ケルマック
（1898-1970）と軍医・疫学者マッ
ケンドリック（1876-1943）によっ
て画期的な感染病流行の数理モデル
SIRが発表されました。
SIR数理モデルは、新型の感染症の
ため免疫を持つ人はいないこと、外
部の都市との間で人口移動がないこ
と、人口は密集し不特定多数の人と
の接触があること、ペストのような
急速かつ短期的な流行を想定したモ
デル方程式です。

計算方法
まず集団を3つに分類します。

未感染者（Susceptable)
感染者（Infected）

感染後死亡もしくは回復による免
疫を獲得した者（Recovered）
それぞれの頭文字を時刻tにおけ
る人数をS=S(t)、I=I(t)、R=R(t)としま
す。これがSIRモデルと呼ばれる所
以です。





第1式の微分方程式
左辺dS/dtは未感染者数Sの時間変化率（微分）。未感染者と感染者の接触により感
染するので、接触率は両者の人数の積SIに比例します。

集団内では、1人が毎日接触する人数を平均m人、それぞれの接触毎に感染が生
じる1日あたりの確率をpとしたとき、感染率β=mp/N。刻々と感染が起こると未感染
人口Sは減少していきます。

第3式の微分方程
左辺dR/dtは回復者数Rの時間変化率（微分）。感染者が一定の速度γで回復していく
とすると、刻々と回復する人が増加していきます。1/γは感染期間が指数宇分布に従う
と仮定した場合の平均値を表します。

第2式の微分方程式
総人口N=S+I+R

は定数ですから、時間微分は0です。

0=dS/dt+dI/dt+dR/dt

これと第1式、第3式から第2式が得られます。



SIRモデルのシミュレーション
以下の初期条件のもと、SIRモデルのコンピュータシミュレーションを行ってみます。

総人口N=1000万人
初期感染者I(0)=100人（S(0)=10000000-100、R(0)=0）
1日1人あたり平均10人に接触（m=10）、接触毎に感染が生じる1日あたりの確率
p=0.02（感染率β=10×0.02/N）
感染者の回復日数を14日（回復率γ=1/14=0.071…）



この結果から以下が読みとれます。

感染者人数のピークは総人口の1/3弱
最終的に9割以上が感染する（S:未感染者数
が200日以後10%であることから）
終息までには200日程度かかる



基本再生産数
SIRモデルを分析すると感染病流行の発生条件が導かれます。

R0=βN/γ

β（感染率）、γ（回復率）、総人口N

このR0が基本再生産数（basic reproduction number）と呼ばれる指標
です。1人の感染者が再生産する二次感染者の平均数を表します。

したがって、

R0>1（閾値条件）

であれば初期の感染者数は指数関数的に増大し、

R0<1

であれば感染流行は発生しません。

SIRモデルは閾値条件が満たされる場合、感染者数は1回のピークをもつ感染流行

がうまれ、やがて自然に終息し、しかも全く感染しない未感染者が一定数残る挙
動を示します。



1905年、インド・ボンベイにおけるペスト大流行の際にSIRモデルを適用

ケルマックとマッケンド
リックはSIRモデルを実
際の事例に適用していま
す。それが、インド・ボ
ンベイにおける1905-
1906年のペスト大流行
です。
SIRモデルはペスト流行
のデータに一致させるこ
とができました。そして、
感染病流行がなぜ自然終
息するのかという当時の
疑問に対しても1つの解
答を与えたのです。

出典：W. O. Kermack and A. G. McKendrick, “A Contribution to the 
Mathematical Theory of Epidemics,”Proc. Roy. Soc. of London. Series A, 
Vol. 115, No. 772 (Aug. 1, 1927), pp. 700-721



なぜモデルが微分方程式で表されるのか？

英国の経済学者マルサス（1766-1834）は、1798年に論文「人口論」を発表し
ました。この中で展開されたアイディア

「微分方程式であらわされる数学モデル」
の原点といえます。マルサスの人口モデルは、簡単に解ける1階微分方程式です。

一人一人人間は離散的な存在ですが、人口が十分に大きい場合、その変動が連続
的とみなすことができます。

つまり、人口を連続量として扱えるということです。すると、人口を時間で微分すること
ができる（したがって積分も可能）わけです。

200年にわたり欧米では実際の社会問題 ── 医学・経済学・物理学・生理学・ロケット工
学・芸術・軍事 ── に対して「微分方程式であらわされる数学モデル」を展開し、それが
問題解決に貢献してきました。



今回紹介したSIRモデルの考案者ケルマックとマッケンドリックもスコッ
トランドの研究者です。
300年前のダニエル・ベルヌーイがSIRモデルを見れば、即座に理解でき
ます。

「こんなモデルなら私でも考えることができる」
なぜなら、ダニエルが知る解析学 ── 微分と積分の言葉で語られている
からです。
しかしそのダニエルでも、連立微分方程式がコンピュータで解かれる風
景を見たら驚嘆の声をあげることでしょう





医療における数理モデルの応用例

薬物動態学（やくぶつどうたいがく、英
語: pharmacokinetics）は、生体に投与し

た薬物の体内動態とその解析方法につ
いて研究する学問である。



薬物療法の基盤となる学問を薬理学(pharmacology)という。

生体に対して影響を与える化学物質を薬物(drug)と総称する。臨床で用いられる

治療薬は薬物の一部である。薬物が生体に対して及ぼす作用を薬理作用
(pharmacological effect)という。

薬理学において薬理作用のメカニズムを研究する学問領域を薬力学
(pharmacodynamics)という。薬物は分子であり生体内の分子と相互作用して作
用を現す。薬物が結合する生体内分子を受容体(receptor)と総称する。

したがって、薬理作用は薬物と受容体の分子間相互作用からはじまる。特に治
療薬の場合は、最終的に個体において十分な効果があるかどうかで判定される。
このことから薬理学では分子レベルの薬物の作用が個体レベルに反映されるま
での、細胞レベル、組織レベル、そして臓器レベルでも薬理作用を理解する必要
がある。



一方、薬物を個体に投与して期待する効果を得るためには、薬物をどれく
らいの量、いつ投与をすればよいかを決定する必要がある。

経口投与か静脈注射かそれとも経皮投与かなどの投与方法も判断しなけ
ればならない。

したがって、投与した薬物が体内にどのように吸収され、各臓器や組織に
分布して、どのくらいの速さでどこから排泄され、標的部位にどのような時
間経過で到達するのかを理解する必要はある。

このような薬物の生体内動態に関する薬理学の領域を薬物動態学
(pharmacokinetics)という。

これは生体が薬物に対してどのような作用を及ぼすかを研究する学問領域
といえる。薬力学的作用に個体差があるのと同様に、薬物の生体内動態に
も個体差があり、これも薬理作用の個体差が生じる原因となっている。また、
薬物を標的とする組織に効率よく送達させる薬物送達システム（drug 
delivery system、DDS）についても開発が進んでいる。



薬物動態学では薬物の生体内動態を

吸収（absorption）、
分布(distribution)、
代謝(metabolism)、
排泄(excretion)の4つに分けて分析をする。

この4つの頭文字をとりADME（日本ではアドメと
呼称される）といわれる。



吸収

薬物は全身の様々な部分から投与される。

全身的な作用を期待して投与された薬物は投与された部位から全身循環に移
行し、その後、作用発現部位に到達する。

このように血管外に投与された薬物が全身循環に到達する過程を吸収
(absorption)という。例えば、経口製剤（錠剤やカプセル剤）が投与された場合に

は、その製剤は消化管内で崩壊し、製剤中の薬物は主に小腸から吸収され血
液中に入る。また非経口投与（経皮吸収型製剤や皮下や皮内注射など）では薬
物はまず投与部位に近い末梢血管中に到達する。



指標
バイオアベイラビリティ
薬物の吸収の指標としてはバイオアベイラビリティ(bioavailability)が知られている。血管

外に投与された薬物はいったん全身循環血中に入り作用部位に到達する。そのため、
循環血中の薬物濃度（血中薬物濃度）が薬物の作用を反映すると考えられる。血管外に
投与された薬物は吸収されて血中に入るが、投与された薬物の全てが血中に入るわけ
ではないことから、投与された薬物のどのくらいの割合が全身循環血中に到達したかが、
薬物の効果を考える上で重要となる。この血管外投与された薬物が全身循環血中に入
る割合をバイオアベイラビリティ（生体内利用率）という。静脈注射した場合、定義上バイ
オアベイラビリティは1になる。

またバイオアベイラビリティは生物学的同等性を示す時に用いられることがある。2つの
医薬品が同等であると確認する方法のひとつは2つの医薬品の有効性や安全性を確か

めることである。このことを治療学的同等性という。もう一つの同等性を確認する方法は
2つの医薬品間でバイオアベイラビリティの量と速度が等しい場合に「生物学的同等性を

示している」という。生物学的同等性が得られていれば新規医薬品の有効性や安全性
は新たに臨床試験を実施しなくとも、「既存の医薬品と治療学的に同等であるとみなすこ
とができる」と考えることが科学的かつ合理的であるとされている。既存製剤の処方や含
量を変更する場合、剤形を変更する場合、後発医薬品などについて生物学的同等性試
験についてガイドラインが出されている。



初回通過効果

経口投与した薬物は小腸上部で吸収され門脈に入る。その場合は消化管粘膜の上
皮細胞において代謝される場合がある。さらに門脈血から肝臓に入った薬物の一
部は肝臓により代謝を受けたり、排泄されたりする。このように薬物が全身循環血
に移行する過程でおこる消失（代謝や排泄）のことを初回通過効果（first-pass 
effect）という。

消化管上皮の薬物代謝酵素発現量は肝臓よりも低く血流量も少ないため、全身クリ
アランスへの関与は少ない。しかし薬物が経口投与される場合は消化管で吸収さ
れた薬物は消化管粘膜を通過する。消化管上皮には主としてCYP3A分子種が発現
しているので上皮細胞内に吸収されたCYP3A基質薬物は上皮内で一部が代謝を受

け代謝を免れた薬物が門脈に移行する。門脈に移行した薬物は肝臓でさらに代謝
を受ける。つまり、経口投与された薬物は消化管粘膜と肝臓で2段階の代謝を受け
る



機構

消化管などの生体バリアを通過する場合は経細胞経路または傍細胞経路通過する必
要がある[1]。

経細胞経路

投与された薬物が経細胞経路で血管内に移行するには生体膜を透過する必要があ
る。生体膜の構造は流動モザイクモデルにより説明される。すなわち、このモデルでは
脂質の極性の頭部が外側（水層側）に位置し、疎水性の脂肪酸同士が向かい合う形
で二重膜を形成している。そして二重膜の中に種々の機能をもつ蛋白質が存在すると
いう構造である。薬物が生体膜を透過する機構は、輸送を推進する力（駆動力）の有
無によって、大きく受動輸送と能動輸送に分けられる。受動輸送にはトランスポーター
を介する促進拡散とトランスポーターを介さない単純拡散が知られている。また能動
輸送も一次性能動輸送と二次性能動輸送が知られている。また蛋白質や多糖など高
分子を輸送する機構では生体膜が形態変化を起こしながら物質を輸送する膜動輸送
があり、細胞外から細胞内へとりこむ場合をエンドサイトーシス、細胞内から細胞外へ
輸送する場合はエキソサイトーシスとよぶ。

傍細胞経路

吸収促進薬を用いることで傍細胞経路を制御することで高分子医薬品を経腸投与で
きるようなる可能性がある。



投与経路
薬物は目的により様々な経路から投与される。投与経路(route of 
administration)により吸収速度や分解の有無などが異なる。投与経路は大きく分

けて経口投与と非経口投与に分けられる。また薬物が全身に作用することを目
的とする場合は全身投与(systemic administration)といい、限局された部位のみ
に作用することを目的とする場合、局所投与(local administraton)という。

経口投与(oral administration、per os、p.o)

経口投与は最も基本的な薬物の投与経路である。多くの薬物は胃腸管粘膜から
の吸収を目的にして口から摂取される。経口投与の利点は安全、簡便かつ経済
的であること。用量、剤形を比較的自由に選択できること、繰り返し投与が容易
にできることがあげられる。患者の協力がなければ投与できないこと、意識障害、
嘔気、嘔吐がある時は使用できないこと、投与した薬物が消化酵素によって分解
されることがあること、吸収された後、門脈系を通り肝臓で分解される（初回通過
代謝）こと、消化管内pHの変化により吸収が変わることがある。薬物の血漿濃度
が高まるまで潜時があるといった点が逆に制限となる。



消化管からの吸収

経口投与の薬物の吸収に関係する消化管の部位は主に胃、小腸、大腸である。なか
でも通常の低分子化合物の医薬品を経口投与した場合は薬物の大半は小腸上部か
ら吸収される。経口投与される多くの低分子化合物が弱電解質であり水溶液の状態で
は非イオン形とイオン形が一定の割合で存在する。非イオン形は一般にイオン形に比
べ脂溶性が高いため生体膜を通過しやすい。脂溶性薬物が受動拡散によって吸収さ
れる場合、その吸収の程度は吸収がおこわなれる部位の面積（消化管の内壁面積）、
運動性（薬剤滞留性の大小）、血液量（吸収後の濃度勾配）またはその部位に残留す
る薬物濃度などの要因によって規定される。

小腸上部

小腸には輪状のひだの表面に絨毛と呼ばれる無数の小突起が存在する。絨毛の中に
は毛細血管やリンパ管が数多くあり、またその外側には単層の上皮が存在する。上皮
細胞の表面にはさらに微絨毛と呼ばれる小さな突起があり刷子縁膜と呼ばれている。
このような構造から小腸内腔の表面積は著しく広くなっており、小腸を単なる円筒と考
えた場合に比べ、微絨毛構造がある場合では約600倍にも達する。さらに小腸上部に

は各種トランスポーターも多く存在する。これらのことは小腸上部からの薬物吸収が有
利である理由とだと考えられている。



胃

胃は小腸のような絨毛構造がないため、表面積は大きくなく、吸収に有利な部位
ではない。しかし胃内のpHは1～3であるため酸性薬物はある程度吸収される。

小腸下部、大腸

小腸下部や大腸では、薬物は小腸上部で吸収されている場合が多く、実際の吸
収は少なくなる。また大腸では小腸のような絨毛構造を持たず、総表面積は小さ
い。しかし小腸下部や大腸は小腸上部よりもpHが高く、塩基性薬物はこれらの部
位でもかなり吸収される。

消化管における吸収に影響を与える因子

消化管における薬物の吸収に影響を与える因子には生理的な要因と薬物の物理
化学的な要因が知られている。



薬物の物理化学的な性質

薬物の物理化学的性質は、薬物の吸収に大きな影響を与える。薬物の脂溶性
やpKaの他、薬物の分子量や水素結合能、薬物の表面構造なども薬物の溶解

性や膜透過性に影響し、薬物の消化管からの吸収のしやすさを規定する。また
薬物の結晶径や結晶多型などが吸収に影響を及ぼす。物理化学的な特性で
最も重要なのは溶解性と膜透過性である。薬物の溶解性と膜透過性のそれぞ
れの高低について4つにクラスに分類するbiopharmaceutics classification 
system(BCS)が提唱されている[2]。BCSにおいてclass1の薬物は溶解性と膜透過
性がいずれも高く最もよい吸収性を示すと考えられている。一方class4に分類さ

れる薬物はトランスポーターの基質にならない限り経口投与後の吸収性が最も
悪く経口製剤としての開発は困難である。



Class 1
Class 1に属する薬物は高い溶解性と高い膜透過性を示す。良好な経口吸収性が期待で
き、個体間の吸収のばらつきが小さい。

Class 2
Class 2に属する薬物は低い溶解性と高い膜透過性を示す。薬物の溶解過程が吸収の律
速となる。投与量と吸収率は比例せず、食後投与で吸収率が増加する場合がある。

Class 3
Class 3に属する薬物は高い溶解性と低い膜透過性を示す。吸収部位での滞留時間が吸

収性に影響する。またトランスポーターの寄与の割合が大きい場合がある。食後投与で
吸収率が低下する場合がある。

Class 4
Class 4に属する薬物は低い溶解性と低い膜透過性を示す。経口製剤として開発するのは

困難であり、投与量を増やしても血中濃度が上がらない。吸収性の個体内・個体間変動
が大きい。



生理的要因
胃内pHや胃内容排出速度や小腸滞留時間、食事や嗜好品は経口製剤の吸収に
影響を与える。

胃内pH
胃内pHの変動は薬物の溶解度や溶解速度に影響を及ぼし、消化管からの吸収
を変動させる場合がある。胃内pHは食事や併用薬物により変動することが知られ
ており、食事摂取後の胃内pHは空腹時のpH1～3から一時的におよそ5程度まで
上昇する。胃酸分泌を抑制させる薬物（抗コリン薬、H2受容体拮抗薬、プロトンポ
ンプ阻害薬）などの併用は胃内pHを上昇させ、吸収に影響を及ぼす場合がある。
加齢によっても胃内pHは上昇することが知られており、50歳以上の半数以上は
胃内pHが3以上の無酸症あるいは低酸症状態にあるとされている。



胃内容排出速度と小腸滞留時間

経口投与された薬物は胃内でいったん滞留し、主な吸収部位である小腸上部に
移動するので胃から小腸への移動時間は吸収に影響を与える。この胃から小
腸への移動速度を胃内容排出速度（gastric emptying rate、GER）という。GERは

個人差が大きい上に、様々な要因により大きく変動する。体格や体位（右側臥
位でGERは上昇する）、妊娠（GERが低下）、精神緊張（GER上昇）などが影響する。
多くの薬物（抗コリン薬、麻薬性鎮痛薬、フェノチアジン系向精神薬、β遮断薬）
は胃の排出を抑制し、GERを低下させる。一方、制吐薬のメトクロプラミドはGER

を上昇させる。小腸に移行した薬物は小腸の蠕動運動により小腸下部へ移動
する。そのため小腸に滞留する時間にも限りがあり、主な吸収部位が小腸であ
る薬物では吸収に有効な時間は2-4時間である。また消化管の蠕動運動に影響

を与える因子は、薬物の小腸滞留時間を変動させ吸収に影響する可能性があ
る。



食事や嗜好品

多くの治療薬は消化管への刺激の低減や飲み忘れの防止などの観点から、食後に投
与されることが多い。食事が吸収に及ぼす影響は一様ではなく、ほとんど影響を及ぼさ
ない場合から、吸収の遅れや低下が生じたり、反対に吸収が上がったりする場合もあ
る。薬物療法を行う上では個々の薬物に応じた考察が必要である。食事は一般にGER

を遅らせ、多くの薬物で吸収がゆっくりになる。高澱粉食、高脂肪食、高蛋白食は一般
にGERを遅くする。高浸透圧はGERを遅らせることから、濃厚なシロップなどの投与によ
りGERが著しく遅くなり、吸収が遅くなる場合がある。少量のアルコールはGERを促進す
るが大量のアルコールはGERを遅くすることが知られている。テトラサイクリンやビスホ

スホネートのように食事成分と直接、相互作用を起こし吸収が阻害される薬物がある。
一方で脂溶性の著しく高い薬物（例えばシクロスポリン）では食後に投与すると、食事
中や食後に分泌される脂質や胆汁中の胆汁酸により溶解度があがり吸収が増大する
薬物がある。トランスポーターにより吸収される薬物では、食事中の成分とトランスポー
ターを競合し吸収の低下を起こすことがある。経口ペニシリンやセファロスポリンなどは
食事中の蛋白質とPEPT1を競合し、吸収が低下することが知られている。



非経口投与(parenteral administration)

非経口投与には注射によるものとそれ以外のものに分けられる。注射によるものに
は静脈内注射、筋肉内注射、皮下注射、皮内注射、動脈内注射、心臓内注射、腹腔
内注射、くも膜下腔内注射などが知られている。注射による投与が必要となるのは
以下の5つの状況である。まずは薬物が経口投与では分解され活性がなくなる場合、

消化管の閉塞、嘔吐などのため経口投与ができない場合、緊急時に血中の薬物濃
度を急速に高める必要がある場合、輸液や輸血を行う場合、局所的に薬物を投与す
る場合（局所麻酔薬のくも膜下腔投与や関節内投与など）が注射の必要な状況であ
る。その他の非経口投与には直腸内投与や舌下投与、鼻粘膜投与、経皮投与、吸
入、局所塗布などがある。注射による非経口投与の特徴は薬理作用部位へ迅速に
送達され、高いバイオアベイラビリティを示すこと、初回通過効果を回避し、消化管環
境の影響を受けない点が長所である。短所としては投与が不可逆であること、手技
に熟練した術者が必要とされ、感染や疼痛のリスクがある点があげられる。臨床医
学でよく用いられる投与方法は静脈内注射、筋肉内注射、皮下注射である。



注射
静脈内注射(intravenous injection、i.v.)

静脈内注射は投与した薬物が直ちに循環に入り、急速に血漿濃度を高めることがで
きる投与法である。バイオアベイラビリティは1.0となる。輸血や輸液には不可欠の経

路である。また筋肉内注射や皮下注射と比べると大量の薬物投与が可能である。短
所としては急速に血漿濃度が高まるため望ましくない作用も急激に起こりうること、塞
栓、出血、感染などの危険を伴うことがあげられる。

筋肉内注射(intramuscular injection、i.m.)

静脈内注射よりも血漿濃度の上昇は緩やかで皮下注射よりは急になる。すなわち、
静脈内注射と皮下注射の中間的な速度で効果が発現する。また油性や懸濁性の薬
物が投与可能である。短所としては神経の損傷、筋拘縮、血腫、感染などの危険が
伴うことである。クレアチンキナーゼなど血液検査に影響を及ぼすこともある。



皮下注射(subcutaneous injection、s.c.)

血漿濃度の上昇は筋肉注射よりも遅い。緩徐な効果発現を特徴とする投与方法である。
油性や懸濁性の薬物が投与可能である。短所としては少量の薬物投与しかできない点
があげられる。

くも膜下腔内注射（intrathecal injection、i.t.またはsubarachnoid injection）

くも膜下腔内に薬が移行しにくいので、局所的に薬物を投与する目的でくも膜下腔内投
与が行われる。血液脳関門をバイパスし神経細胞に作用できる点が特徴である。局所
麻酔薬を用いた脊椎麻酔（脊髄くも膜下麻酔）や白血病におけるメソトレキセートなど抗
がん剤投与、脊髄性筋萎縮症におけるヌシネルセンの投与などで用いられる。

皮内注射(intradermal injection、i.d.)
皮内注射はツベルクリン反応検査や局所麻酔薬投与など限定的な場合に用いられる。

動脈内注射(intra arterial injection、i.a.)
血管造影などの場合や局所灌流の場合に用いられる。薬物の全身投与には用いない。

腹腔内注射(intraperitoneal injection、i.p.)

実験動物に薬物を投与する場合に比較的多く用いられる経路である。臨床医学ではほと
んど用いられない。腹膜灌流も広い意味ではこれにあたる。



その他
直腸内投与(rectal administration)

直腸内投与は意識障害や嘔吐があっても投与可能な投与方法である。直腸下部からの
吸収は門脈系を介さず下大静脈を介して薬物が循環に入る点が経口投与とはことなる。
肝臓を経由せずに全身血流に薬物が吸収されるので血中濃度の上昇が速く、初回通過
効果を免れることができる。坐薬や注腸液を用いて比較的大量の薬物を高濃度で投与
することができる。直腸内投与の欠点としては投与の刺激により排便により排出されてし
まうことがあること、下痢を起こしている患者には使用できないこと。直腸から結腸部に
薬剤が異動することがあり吸収や初回通過効果の影響が変動しやすいことがあげられ
る。

舌下投与(sublingual administration)

口腔粘膜からの急速な吸収を目的として投与する。舌下錠、バッカル剤、スプレー剤が
知られている。門脈系を介さず上大静脈から循環に入り、吸収が比較的速く、初回通過
効果を免れる。食物による吸収の影響がない。

鼻粘膜投与(nasal administration)

かつては局所作用を期待した投与方法であるが全身作用を目的とする投与部位として
注目されている。消化酵素により分解される薬物の全身投与を目的として一部のペプチ
ドホルモンなどが投与される。



経皮投与(percutaneous administration)

薬物を含む軟膏を皮膚に貼付することによって、緩やかに薬物を吸収させ、作用時間
を長くすることができる。ホルモン製剤や鎮痛薬の投与に用いられる。皮膚は外表面
から表皮、真皮、皮下組織に分けられる。表皮の最も外側の角質層はケラチンのマト
リックスと脂質によって満たされた死細胞からできており物質の透過性が極めて低い。
そのため皮膚は薬物の全身投与には不向きとされていたが、十分に高い脂溶性をも
つ一部の薬物では皮膚を介した受動拡散で皮膚から吸収される。初回通過効果を受
けずに持続的な薬物投与が可能であり、かつ安全で簡便な投与が可能であるという
利点を有する。

吸入(inhalation)
気体、揮発性の薬物の投与に用いられる。吸入麻酔薬が代表例である。吸収は早い。

局所塗布(topical application)

薬物が接触面に直接作用することを目的として、皮膚または粘膜の表面に塗布して投
与することをいう。この場合でも投与面積が広かったり、投与量が多ければ薬物が循
環血液に入り全身作用を示す。



分布

薬物が血管内に投与された場合、あるいは血管外に投与された場合は吸収の過程を経
て、いずれの場合でも薬物は全身循環に入る。そして全身循環血中から、薬物は血管外
に出て細胞外液である組織間液や細胞内液に移行する。分布(distribution)とは薬物が

ある部位からある部位へと移行することを言うが、一般に薬物動態では循環血中から体
内の各組織への移行の過程をさす。薬物の作用は、標的組織（薬効を発揮する組織）で
の濃度に依存するので、組織への分布量は薬効を規定することになる。すなわち、血液
中の薬物濃度がいくら高くても、実際に組織へ分布した量が少ないと薬理作用は小さくな
る。一方、標的組織以外の組織への分布は有害作用を生じる要因となる。作用部位であ
る標的組織に選択的に分布し、それ以外の組織には全く分布しない薬物があれば理想
的であるが、今のところそのようなものは知られていない。薬物送達システム（drug 
delivery system、DDS）におけるターゲティングは分布の性質の向上を目的としたものであ
る。薬物の分布に大きく影響する因子の1つは血漿蛋白質への結合である。その他の薬

物の分布を規定する因子には薬物の物理化学的特性、蓄積、組織血流量、毛細血管の
特性、ならびに特殊輸送機構の存在などがあげられる。



指標
分布容積

投与された薬物は全身循環によって各組織に運ばれて組織内に移行する。ここで体
内にどれだけの薬物が存在するかを知りたい場合、体内薬物量を実測することは難
しいので通常は血漿中の薬物濃度を指標に推定することになる。そこで体内の薬物
量と血漿中薬物濃度を関係づける定数として分布容積(volume of distribution)を考
える。分布容積は容量(L)の単位を持ち、薬物が血漿中濃度と同じ濃度で均等に溶

解していると仮定した時に薬物が分布できる体液の容量とみなすことができる。した
がって分布容積は物理的な容積ではなく、血漿中濃度から想定された定数であり生
理的容積と必ずしも一致しない。健康な成人（体重60-70kg）の血漿量はおよそ
3L(0.05L/kg体重)、総細胞外液量は12L(0.2L/kg体重)、全体液量は約36L(0.6L/kg体
重)である。血管外にほとんど分布しない薬物では薬理物は血管内にのみ分布し、そ

の分布容積は血漿の容積にほとんど等しくなる。一方、分布した組織内の高分子に
高い割合で結合するような薬物の場合、薬物が分布している体液量は同じであって
も、組織内の薬物濃度は高くなりその反対に血漿中濃度は低下するため、分布容積
は全体液容量よりも大きな値をとる



分布容積が血漿容量（約3L）になるとき

血漿蛋白結合の高い低分子化合物か分子量の大きな水溶性薬物などで血管壁を
通過できない薬物と考えられる。エバンスブルー、インドシアニングリーン、ヘパリン
(0.058L/kg)、デノスマブ(0.042L/kg)が該当する。

分布容積が総細胞外液量（約12L）になるとき

親水性が高く血管から容易に組織に移行するが組織の細胞内へは移行しない薬
物や血漿蛋白の結合が強く組織中の結合がわずかである薬物と考えられる。ゲン
タマイシン(0.25L/kg)、アミカシン(0.3L/kg)、バルプロ酸(0.13L/kg)、ワルファリン
(0.11L/kg)が該当する。

分布容積が全体液量（約36L）になるとき

血液中でも組織中でもほとんど高分子と結合しない薬物や血漿蛋白への結合は強
く、組織中の結合がわずかの薬物であると考えられる。アルコール(0.54L/kg)、イソ
プロピルアンチピリン(0.57L/kg)、クリンダマイシン(0.67L/kg)が該当する。



分布容積が全体液量を超えるとき

組織内での結合率が血漿中の結合率よりも高く、組織中に蓄積される薬物と考えら
れる。モルヒネ(3.3L/kg)、プロプラノロール(3.9L/kg)、ジゴキシン(8.4L/kg)、アジスロマ
イシン(30L/kg)、アミオダロン(66L/kg)が該当する。

薬物分布の速度とコンパートメント

ほとんどの薬物は循環血中（血管コンパートメント）から体内の他のコンパートメント
（血管外コンパートメント）に分布する。薬物を静脈内注射した場合、薬物は血管から
他の組織に分布するのに伴って、血漿中薬物濃度は急激に低下する。この投与後
から臓器や組織への分布が完了するまでを分布相（α相）と呼ぶ。この急速な薬物濃
度低下に引き続き、ゆるやかな濃度の低下が観察される。これを消失相（β相）とい

い、ここでは薬物の体内からの消失と血漿中濃度の低下に伴いいったん組織に分
布した薬物が血液に戻り体内に拡散する。



分布に影響を及ぼす要因
血漿蛋白質結合

血管内に入った薬物が毛細血管から血管外へ移行する場合、内皮細胞を通過する
か、血管内皮の膜小孔を通過するかの経路が考えられる。血管内皮の細胞間隔が
かなり大きいことから分子量が1,000を超える薬物でなければ水溶性の高い薬物で

あってもほとんどの組織に分布できる。しかし多くの薬物は蛋白質と結合して、血漿
中を循環している。この場合、蛋白質と結合した薬物は血管外に分布できないため、
組織へ移行できるのは蛋白質と結合していない薬物である。蛋白質と結合している
薬物を結合型、結合していない薬物を非結合型（あるいは遊離型）といい、それらの
割合を蛋白結合率（protein binding ratio）と呼ぶ。そして薬理作用を発揮するのは蛋

白質と結合していない非結合型の薬物である。そのことから、薬物療法を考えるうえ
で、蛋白結合は1つの主要な因子である。アルブミンは血漿中に最も多く存在する蛋

白質で、ほとんどの場合、薬物は血漿中でアルブミンと結合すると考えられている。そ
の結合は水素結合、ファンデルワールス力による結合、イオン結合などが関与すると
考えられ、一般的には可逆的である。また塩基性薬物ではα1酸性糖蛋白質とも結合
する。



非結合型の薬物が生体内変化を受け、排泄されると結合型のものから遊離して出てくる
ように結合型と非結合型は動的平衡であり、結合型は薬物の貯蔵庫としての役割を担う。
結合型は腎糸球体でも濾過されにくい。

理論的には血漿タンパク質に結合する2つ以上の薬物の同時投与は非結合型薬物の予

想以上の血中濃度につながる可能性がある。しかし非結合型薬物が増えると排泄される
薬物も増えることから臨床的に意味のある相互作用を実証することは困難である。

組織血流量
組織血流量の違いは分布速度に影響を及ぼす場合がある[4]。血流の多い臓器である腎

臓、肝臓や肺などへの薬物への分布は速く、一方、皮膚や脂肪固有組織などの血流の
少ない分布はゆっくりである。



蓄積

薬物の器官および組織への分布は必ずしも一様ではない。特殊な器官または組織
へ蓄積する場合がある。例えばある器官が薬物に対して親和性が高かったり能動
輸送の機序が存在する場合には、その器官に薬物が選択的に分布する。例えば、
ヨードは能動輸送により甲状腺に蓄積する。また脂溶性の薬は脂肪組織に選択的
に取り込まれるため脂肪組織への蓄積は血漿蛋白質結合と並んで薬物の貯蔵庫
の役割を果たす。静脈麻酔薬のチオペンタールは中枢神経に急速に移行し、薬理
作用を現すが、同時に脂肪組織に取り込まれ血中濃度は急速に下がる。反復して
適用すると脂肪組織への蓄積が大きくなり、脂肪組織より遊離した薬物が作用する
ようになる。このような現象を薬物の再分布(redistribution)という。



薬物の物理化学的性質

薬物の物理化学的特性（分子量、脂溶性、荷電、状況）も薬物の分布に影響する。一
般に分子サイズの大きな薬物の分布は制限されるが通常の組織では毛細血管の血
管内皮細胞は非常に大きい細胞間隔を持っているため、分子量が1,000以下の薬物

であれば、極性が高く水溶性のものでもかなり組織へ移行する。末梢の毛細血管を通
過した薬物は水溶性の薬物では組織の細胞間液に分布し、脂溶性の薬物では細胞
膜を透過し細胞内液にまで分布する。そのため薬物の脂溶性は分布に影響する。さら
に組織内で薬物は、受容体などの特異的なあるいは非特異的な生体高分子に結合
するため組織内での結合率も薬物の分布に影響する。蛋白質医薬品や核酸医薬品
など高分子医薬品は体内分布では低分子薬物とは異なるいくつかの問題が存在する。
高分子医薬品においても循環血中から組織（特に標的となる組織）への分布は薬効を
得るために重要である。しかし高分子医薬品では組織に分布するのみでは不十分で、
その後の細胞内さらに標的となる細胞内組織（オルガネラ）に送達されなければならな
い。このために様々な薬物送達システムが研究されている。



トランスポーター

臓器への分布は多くの場合、受動的な膜透過性によるがトランスポーターの存在
も薬物の分布に大きな影響を与える。例えばパーキンソン症候群の治療薬のL-
DOPAの脳への移行はアミノ酸トランスポーターであるLAT1によっている。逆にシク
ロスポリンがその脂溶性の割に脳へ分布しにくいのはP糖蛋白質（MDR1遺伝子の

産物）というトランスポーターにより通過した薬物が再びくみ出されているためであ
ると考えられている。



特殊な組織への分布
血液脳関門と血液脳脊髄液関門
脳への薬物移行には血液脳関門(blood-brain-barrier; BBB)と血液脳脊髄液関門（blood-
cerebrospinal fluid barrier、BCSFB）の2つの経路が知られている。BBBの表面積はBCSFB
に比べて5,000倍も大きいことから薬物輸送経路としてはBBBの方が優れている。さらに
BBBを構成する脳毛細血管は脳内を網目状に巡っていることからBBBを通過した薬物は
脳神経細胞に到達しやすい。一方、BCSFBを構成する脈絡叢を通過した薬物は脳脊髄液
中に移行したのち、CSFとともに静脈に移行する。標的部位の脳神経細胞へ到達するに

は静脈へ移行する前に細胞間液中を拡散する必要があるが、脳脊髄液中から遠い部位
への移行は著しく制限を受ける。特に分子量の大きい蛋白質医薬品や核酸医薬品は拡
散による移行はほとんど期待できない。

血液胎盤関門と胎児移行
血液胎盤関門は血液脳関門のような厳しい関門性はない。



代謝

生体内に取り込まれた薬物はそのままの形で排泄されることもあるが、多くの場合は生
体内変化(biotransformation)を受ける。この過程を代謝(metabolism)という。代謝は2段
階で進むことが多い。第1相反応では酸化還元、加水分解、脱アミノ化、脱アルキル化な
どにより多くの薬物は不活化される。第2相反応はグルクロン酸抱合やグリシン抱合など

抱合反応であり、これにより薬物代謝物の水溶性が増して排泄されやすくなる。薬物の
生体内変化により活性のある薬物が不活性化されるだけではなく、不活性の薬物が活
性化されたり、活性のある薬物が他の活性（あるいは毒性）のある薬物に変わるという3

つのパターンがある。生体内変化を受けて活性をもつようになる薬物をプロドラッグ
(prodrug)という。これらの生体内変化には主として肝臓にある薬物代謝酵素(drug 
metabolizing enzyme)が重要な働きをしている。これらの酵素活性には種差があることが

あり、生体内変化に関する動物実験の結果をそのままヒトに適応することを難しくしてい
る。



第1相反応
第1相反応で特に重要なのは消化管上皮細胞および肝細胞の小胞体膜上に存在するシ
トクロムP450（cytochrome P450、CYP）である。この酵素はヘムタンパク質であり、波長
450nmに最大吸光度をもつためにこのように命名されている。CYPはNADPH-cytochrome 
p450 oxidoreductaseと共同し、分子酵素とNADPH（reduced nicotinamide adenine 
dinucleotide phosphate）を基質として薬物の第1相反応を触媒する。CYPはヒトでは57種
類のアイソザイム(isozyme)からなる遺伝子ファミリーを形成しておりCYP1、CYP2、CYP3が
重要な働きをしている。CYPアイソザイムはそれぞれ一定の基質特異性があり、いくつか
の薬物を基質とする。中でも発現量が多く基質の種類が多いのがCYP3A4である。
CYP3A4はニフェジピン、ベラパミル、シクロスポロン、タクロリムス、アトルバスタチン、ミ

ダゾラム、リスペリドンなどを基質とし、グレープフルーツジュースやクラリスロマイシン、
ボリコナゾールやケトコナゾールが阻害薬である。CYP以外に第1相反応に関与する酵素
はフラビン含有モノオキシダーゼ(FMO)やカルボキシエステラーゼ(CES)、アルコール代謝
経路に関係する酵素、キサンチン酸化酵素(XO)、モノアミンオキシダーゼ(MAO)などがあ
げられる。



第2相反応
第2相反応では抱合(conjugation)反応が主に肝臓で起こる。UDP-グルクロン酸転
移酵素（UDPGT/UGT）や硫酸転移酵素(SULT)、グルタチオンS-転移酵素(GST)、N-
アセチル転移酵素(NAT)、メチル転移酵素が関与する。



排泄
排泄（excretion）は腎臓、肝臓のほか肺、乳腺、唾液腺、汗腺などからも起こる。ほとんど
の薬物や薬物代謝物は腎臓及び肝臓からの胆汁排泄で体内から排除される。

腎臓からの排泄

腎臓からの薬物の排泄は糸球体での濾過、尿細管からの分泌、尿細管での再吸収に
よって決まる。糸球体濾過（glomerular filtration）は糸球体毛細血管を介するが、濾過の

障壁になるのは内皮細胞、基底膜、スリット膜、上皮細胞である。この透過性は通常の毛
細血管と比べると極めて高い。透過機序は静水圧と膠質浸透圧の差によるいわゆる限
外濾過であり、濾過量は溶質の大きさと荷電状態によって決まる。透過する物質の大きさ
は7～10nm程度で、分子量は約5,000のイヌリンは容易に透過するが、分子量約70,000

のアルブミンは濾過が制限される。糸球体での薬物濾過は血漿蛋白質の結合度と糸球
体濾過量によってきまる。多くの薬物はアルブミンとの結合率が高く、糸球体で濾過され
るのは遊離の部分が主になる。近位尿細管では薬物は有機アニオン輸送系あるいは有
機カチオン輸送系を介して尿中に尿細管分泌(tubular secretion)される。血漿から尿細管
内腔までには尿細管の基底外側膜と管腔側膜の2枚の細胞膜を通過する必要があり、そ

こに発現するトランスポーター群が輸送を担っている。同一のトランスポーターにより輸送
される薬物の分泌は相互に拮抗する。例えば有機アニオン輸送系はプロベネシドにより、
有機カチオン輸送系はキニジンにより競合的に拮抗される。また脂溶性薬物は糸球体で
濾過された後に尿細管再吸収(tubular rebsorption)が起こる。



胆汁からの排泄

肝臓で代謝された薬物のあるものは胆汁として腸管に排出される。有機アニオン
と有機カチオンの排泄を行うトランスポーターやABC輸送体が存在する。胆道から

排出された薬物が腸管で再び吸収される場合がある。これを腸肝循環という。こ
れにより薬物の排泄が遅延し半減期が延長する。



薬物速度論

薬物投与から一定時間後の薬物血中濃度を理論的に計算し、予測することを目的とした
学問である。血中濃度の予測は臨床における薬物投与計画の作成や医薬品の研究開
発などにおいて重要である。

ドラッグデリバリーシステム
DDS（drug delivery system、ドラッグデリバリーシステム）とは薬物を作用部位へ選択的か
つ望ましい薬物濃度-時間パターンのもと送達することを目的とした新しい投与システムで
ある。DDSは放出の制御、吸収の制御、標的指向性の制御に分類できる。

放出の制御

薬物の放出制御はコントロールドリリースといわれ、製剤からの薬物の放出を制御するこ
とで必要なときに必要な量の薬物を供給するための技術である。この概念はA.Zaffaroni
によって1968年米国で設立されたALZA社において開発された徐放制御製剤や経皮吸収

型製剤に由来する。経口徐放化製剤、経皮吸収型製剤のほか、粘膜適用型放出制御製
剤、注射型放出制御製剤などが知られている。



吸収の制御

経口投与された薬物が薬効を発揮するためには消化管から吸収され、消化管内や肝臓で
代謝を受けずに循環血液中に移行することが必要となる。しかしながら薬物のなかには難
吸収性の薬物や消化管や肝臓で速やかに代謝を受け分解される（初回通過効果）薬物も
多い。薬物吸収を改善することを目的としたDDSとしては吸収促進薬、蛋白質分解酵素阻

害薬といった添加物の利用、プロドラッグ化など薬剤の分子構造修飾、薬物の剤形修飾な
どがあげられる。なお薬物の分子修飾や剤形修飾は薬物の吸収だけではなく薬物の分布
も変化する場合がある。

添加物の利用

添加物の利用としては吸収促進薬や蛋白質分解酵素阻害剤が利用される。吸収促進薬
は難吸収性薬物の吸収を改善するために消化管の粘膜透過性を一過性に上昇させる薬
物である。界面活性剤、胆汁酸塩、キレート剤、脂肪酸、細胞膜透過ペプチド、キトサンオ
リゴマー、クローディンモジュレーターなどが開発されている。また消化管内で分解されや
すいインスリンなどの生理活性ペプチドは各種消化酵素や蛋白質分解酵素により分解さ
れる不安定なものが多い。これらの吸収を促進するために蛋白質分解酵素阻害薬が有効
である。



薬物の分子修飾
薬物の分子修飾ではプロドラッグがもっとも知られている。プロドラッグは1958年に
A.Albertによって提唱された概念である。作用が既知である親化合物の誘導体であり、

それ自身の薬効はないか、あるいは親化合物に比べて低く、体内で酵素的あるいは化
学的に親化合物に変換されるものと定義されている。プロドラッグは吸収性の改善、作
用の持続化、標的組織への選択的移行性、毒性や副作用の軽減、水溶性の増加、安
定性の向上、不味い味や臭いのマスキングなど様々な目的で使用される。



薬物の剤形修飾
微粒子キャリアを用いて剤形修飾する場合がある。

標的指向性の制御
標的指向性はターゲティングとも言われる。19世紀末にドイツの細菌学者であるパウ

ル・エールリヒが「魔法の弾丸」という概念を提唱した。この概念は薬物の標的指向性
を高めることで選択毒性を生み出すものであり、標的は細菌など外来微生物であった。
一般に生体内に投与された薬物のうち作用部位まで到達する割合はごくわずかである。
そこで標的部位に指向する性質を薬物に与えて、標的部位に選択的に薬物を送達し
薬理効果を発現させようという標的指向性が必要となる。



高分子医薬品

従来の低分子医薬品と比較して体内動態を支配
する要因が大きく異なっており吸収・分布・代謝・
排泄など体内動態特性も極めて特徴的である。



吸収

消化管から吸収されないことも高分子医薬品の薬物動態学において重要な特徴であ
る。一般的に高分子医薬品は分子サイズが大きく、極性を持つことから、脂溶性が高
い低分子医薬品のように受動拡散によって生体膜を通過することはできない。一方、
上皮細胞の経細胞輸送ルートとしてピノサイトーシスとよばれる細胞外液を小胞に取り
込む際に、外液中の物質も同時に輸送する経路があるがその量は極めて少ない。さら
に多くの蛋白質医薬品は消化管内で多様な消化酵素や蛋白分解酵素によって速やか
に分解される。それゆえ、例えば天然型インスリンの場合、経口投与後のバイオアベイ
ラビリティは0.1%以下である。大腸は胃や小腸と比べると酵素による蛋白分解酵素の

活性が弱いとされており、大腸からは蛋白質医薬品の消化管吸収が動物実験レベル
では可能であるが実用レベルではない。



パイエル板に存在するM細胞は極めて高い経細胞輸送能があるため、高分子医薬
品のリンパ系を介した消化管吸収ルートとして注目されている。

実用レベルでは高分子医薬品は経口投与不可能なため、2017年現在では静脈注

射や皮下投与や筋肉内投与で高分子医薬品は投与される。皮下投与や筋肉内投
与された高分子医薬品は、主に毛細血管への拡散とリンパ管系を介した輸送の両
経路より血液中に移行すると考えられている。

目安として16kDa以下の低分子量の場合は、主に皮下間質内を拡散により通過し、
毛細血管に到達するのに対して、16kDa以上の高分子量の場合は皮下間質の細胞

間隙を抜けて、基底膜がなく細胞間隙が大きなリンパ管系に入ると考えられている。
リンパ液の流速が遅いこともあり、皮下・筋肉内に投与された高分子医薬品の吸収
は緩徐で、半減期も比較的長いことが多く、単回静脈内投与するよりも持続的に高
い血中濃度を維持することができる[7][8]。皮下投与された高分子医薬品のバイオ
アベイラビリティは50～100%と高い。





3種類の毛細血管を示す。

連続型毛細血管が毛細血管でもっとも一般的なタイプであり筋組織、皮膚、結
合組織、肺、外分泌腺、胸腺、神経組織などに存在する。連続性毛細血管で
は分子量1kDa以上の水溶性分子はほとんど透過しない。有窓性毛細血管は

腎臓、腸管、脈絡叢、内分泌腺など組織と血液間での迅速な物質交換を必要
とする臓器でみられる。孔の径は50-80nm程度である。非連続性毛細血管は

肝臓、脾臓、一部の内分泌器官、骨髄などで見られる。非連続性毛細血管で
は径1μmを超えるものから、50nmほどの小さい孔まである。
詳細は「毛細血管」を参照



分布

脂溶性の高い低分子医薬品の場合は血液から組織細胞へ容易に膜透過により
移行でき、かつ組織内蛋白結合性も高いことから、分布容積は組織の実容積を
上回るなど、比較的高値を示すことが多い。また、水溶性が高く容易に膜透過が
できない薬物であっても、膜上に発現する一連の薬物トランスポーターの基質と
なる場合は臓器選択的な分布がみられることもある。しかし高分子医薬品の場合
は細胞膜の拡散による透過やトランスポーターによる輸送はほぼ期待できず臓
器への移行のメカニズムは大きく異なっている。まず、高分子医薬品の血液から
組織の細胞外液スペースへの移行は臓器により著しく異なる。これは毛細血管の
構造に由来すると考えられている。高分子医薬品の薬物動態学の最も重要な特
徴は毛細血管の透過性の制限があるため、不均一な体内分布を示すことがあげ
られる。肝臓、脾臓や骨髄のような基底膜のない非連続性毛細血管をもつ臓器で
は分子量で100kDa位までの高分子は比較的容易に移行できる。一方、脳や筋肉
や皮膚など連続型毛細血管をもつ臓器では分子量1kDa以上の水溶性分子はほ

とんど移行しない。その中間にあたる有窓性毛細血管をもつ小腸や腎臓では分
子量が比較的大きいものでもゆっくりであるが移行する。有窓性毛細血管では径
50～80nmの孔(pore)または窓(fenestration)があいている。



一方、一部の血液から細胞外液スペースへの移行ならびに細胞外液ス
ペースから組織細胞内への移行には、複数の輸送経路が存在する。受容
体介在性エンドサイトーシス（receptor-mediated endocytosis、RMT）は薬効

標的となる細胞表面の受容体に高分子医薬品が選択的に結合、もしくは
ヘパラン硫酸プロテオグリカンのような基質選択性の低い膜蛋白質に非選
択的に結合した複合体が細胞内に小胞として取り込まれる現象である。特
に標的受容体を介した輸送は組織選択的な高分子医薬品の移行に寄与
している。これは受容体を必要とすることから、高分子医薬品の濃度依存
的な組織取り込みの飽和が観察される。一方、非選択的かつ非飽和の高
分子医薬品の組織取り込み機構としてはマクロファージや単球、好中球の
限られた種類の貪食能を有する細胞によるファゴサイトーシスや多くの細
胞で見られるピノサイトーシスがあげられるが、その高分子医薬品の組織
移行への寄与は量的にみて限定的である。したがって、高分子医薬品に
おいては一部受容体介在性エンドサイトーシスによる組織選択的な移行
はあるものの、静脈内投与後の全身レベルの分布容積は、ほぼ血漿容量
もしくは血漿容量+細胞外スペースの容積程度であることが多い。



クリアランス

代謝・排泄に関してクリアランスとしてまとめて述べる。低分子医薬品のクリアランス
は主に代謝酵素による物質交換と薬物トランスポーターによって制御されるのに対し、
高分子医薬品はこれらの基質とはならず全く異なった機構により体内より消失する。
高分子医薬品の主なクリアランス機構としては、血漿中や組織表面に存在する分解
酵素による代謝、エンドサイトーシスによる細胞内への取り込みとそれに続くリソソー
ムへのソーティング・分解酵素による代謝、さらに腎臓による排泄が関与する。さらに
抗体医薬品についてはnepnatal Fc受容体（FcRn）との細胞内結合を介した分解抑制・
リサイクリング促進効果なども体内動態を考える上で考慮すべき要因となっている。



血液中や組織表面の分解酵素による代謝

血液中には複数の可溶性のペプチド分解酵素が存在するとともに、肝臓や腎
臓など複数の臓器にはaminopeptidaseやγ-glutamyl transpeptidase（γ-GT）のよ

うな膜結合型で細胞外に触媒部位を有する分解酵素が複数存在している。し
たがって、蛋白質医薬品の場合は、これらによる代謝が血中安定性・効果の持
続に影響を与えうる。高分子蛋白質の場合は、分解酵素による代謝をうけ、速
やかに生物活性を失うものは多くない。しかし低分子ペプチドにおいてはこれら
の代謝が速やかな消失を支配している事例が知られている。速やかに消失す
る低分子量ペプチドとしてはアンジオテンシンやソマトスタチンが知られている。
ソマトスタチンは14アミノ酸からなる環状ペプチドであるが分解酵素による代謝
の影響で半減期はわずか数分である。ソマトスタチンの構造を8アミノ酸に短縮
し、一部のアミノ酸をL-アミノ酸からD-アミノ酸に変換したオクトレオチドをつくっ

たところ、ソマトスタチンの生理活性を維持しつつ、分解酵素の代謝を逃れ血中
半減期を90分まで延長することに成功した。



細胞内への高分子医薬品の取り込みと分解

高分子医薬品は血中速度が比較的速い臓器である肝臓や腎臓における代謝により体内
から消失するケースが多くみられる。高分子医薬品の消失メカニズムとしては、上述した血
中・組織表面の分解酵素による分解に加えて、細網内皮系に属するマクロファージや単球
など異物の貪食能を有する細胞群による非特異的な取り込みや、高分子医薬品の薬効標
的となる受容体介在性エンドサイトーシスによる内在化の後、受容体との複合体を形成し
た状態でリソソームへソーティングされる選択的な分解機構が関与している。たとえば、上
皮成長因子（EGF）や肝細胞増殖因子（HGF）はともに肝臓に発現するそれぞれの受容体が
薬効標的となるが、これらは同時にクリアランス受容体としても働き、リガンド-受容体複合

体が内在化すると、一時的に細胞表面の受容体数が減少（ダウンレギュレーション）するこ
とにより次にきたリガンドのクリアランスが低下する現象もみられる[9]。

また、細胞表面への吸着やヘパラン硫酸プロテオグリカンのような非選択的な細胞内取り
込みを介した分解機構も存在する。これらは前者と比較すると飽和しにくいが、そのクリア
ランスの絶対値は小さいことが多い。したがって、リガンドが低濃度のときは、受容体介在
性エンドサイトーシスが主な消失機構であるが、高濃度になるにつれて前者の飽和に伴い、
後者のような非飽和性の消失機構がメインになることもありうることが示されている。後者
の場合は肝取り込みは高分子医薬品の電荷にも影響され、正電荷を有するものは中性ま
たは負電荷をもつものに比べて血中からの消失がはやい。



100nm以上のサイズになると肝臓や肺などに存在する貪食細胞によって

認識されやすくなる。核酸医薬は高分子としての体内動態を示すが、リン
酸基に由来する負電荷が連続するポリアニオンであることから、ポリアニ
オンに対する取り込み活性が高い肝臓に速やかに取り込まれる傾向があ
る。



腎臓からの排出

高分子化合物の尿中排出には代謝と異なり種差がほとんどないとされている。高分子
医薬品の多くは、その分子量に従い、直接または代謝により低分子化された後尿中に
排泄される。糸球体における高分子医薬品の濾過による除去効率は分子サイズ（サイ
ズバリアー）と電荷（チャージバリアー）が密接に関係している。分子量が4kDa以下のも
の、あるいは5nm未満のサイズは糸球体でほとんどが濾過されるに対して分子量が
30kDaを超えると糸球体濾過率は著しく低下する。糸球体濾過率は分子量が大きくなる
につれて低下し[10]、同じサイズならば負電荷は濾過されにくい[11]。サイトカインなど

の比較的分子量の小さいタンパク質の場合には、腎糸球体濾過を受けることで速やか
に消失することから血中滞留性の増大を目的に他の高分子で修飾された誘導体が開
発されている。

糸球体濾過された比較的低分子量の蛋白質は大部分が近位尿細管において受容体
介在性エンドサイトーシスもしくは吸着性エンドサイトーシス（adsorptive-mediated 
endocytosis、AMF）によって細胞内に内在化された後、リソソームなどで分解されアミノ
酸となり、生体内で再利用されることが多い。例えばLDL受容体ファミリーにぞくする
LRP2は尿細管管腔側に高発現しており、エンドサイトーシス受容体として蛋白質やペプ

チドを受容体介在性エンドサイトーシスにより取り込む。アミノグリコシド系抗菌薬やミオ
グロビンなどの尿細管への取り込み・蓄積と毒性の発現の原因となっている。



細胞内動態

高分子医薬品では細胞膜やオルガネラ膜も大きなバリアとなる。高分子医薬品の細胞への
取り込み、エンドソーム脱出、オルガネラへの分布に関して述べる。

細胞への取り込み

高分子医薬品の細胞への取り込みはエンドサイトーシスと呼ばれる細胞自身が有する高分
子取り込み機構が利用される。エンドサイトーシスにはクラスリン経路、カベオラ経路、マク
ロピノサイトーシス、トランスサイトーシスなどが知られている。免疫細胞にはファゴサイトー
シスと呼ばれるμmのサイズの粒子を取り込み機構があるが免疫細胞以外は行うことがで
きない。

クラスリン経路

クラスリン経路はコレステロールの細胞内取込機構として知られている。コレステロールは
LDL（低密度リポ蛋白質）という直径22nmの粒子としてLDL受容体を介したエンドサイトーシ

スにより細胞内に取り込まれる。細胞内在時に小胞がクラスリン分子によって包まれる。エ
ンドサイトーシス小胞は選別の場である初期エンドソームに融合する。初期エンドソームの
管状部分は小胞として出芽し、直接または回収エンドソームを介して積荷を細胞膜へ戻す。
初期エンドソームは多胞体を経て後期エンドソームに成熟する。分解される膜タンパク質は
腔内小胞に取り込まれる。リソソームに融合して消化が起きる。エンドソームの成熟の各段
階はトランスゴルジ網とつながっており、新たに合成されたリソソーム蛋白質が供給される。



カベオラ経路

クラスリンを介さないで内在化するエンドサイトーシスとしてカベオラが知られている。カベ
オラはほとんどの細胞の細胞膜に存在し、深く陥入したフラスコ上の凹みである。カベオ
ラは脂質ラフトから作られ、カベオリンという膜内在蛋白質が膜の湾曲を安定化している。
カベオラは内在化すると初期エンドソームへ、あるいはトランスサイトーシスすることが知
られている。

マクロピノサイトーシス

クラスリンを介さないエンドサイトーシス機構であり、ほぼすべての動物細胞でみられる。
マクロピノサイトーシスは増殖因子やインテグリン、アポトーシスを起こした細胞の残骸や
一部のウイルスなどの特異的リガンドなどによる細胞表面受容体の活性化に応じて誘導
される。マクロピノサイトーシスは分解専用の経路で後期エンドソームやエンドリソソーム
と融合しリサイクルはしない。

トランスサイトーシス
極性を有する上皮細胞や内皮細胞はトランスサイトーシスという輸送経路が存在する[12]。

エンドサイトーシスされると識別エンドソームに行き、そこで振り分けが行われる。分解経
路では後期エンドソームを経てリソソームと融合する。トランスサイトーシス経路では、回
収エンドソームを経てトランスサイトーシスされる。



エンドソーム脱出

エンドサイトーシス後の細胞内輸送経路はリソソームとの融合、リサイクリング、
トランスサイトーシスなどのネットワーク機構で制御されているが既定路線はリソ
ソームとの融合である。したがってリソソームでの分解を回避するためにエンド
ソーム脱出は不可欠である。膜融合や膜破壊などのメカニズムが知られている。
エンドソーム内の酸性環境応答し脱出する技術などが知られている。

オルガネラへの分布

核やミトコンドリアなどのオルガネラへ分布するためには膜の通過が必要である。
特に核膜は分子量60,000以上または直径40nm以上の分子は受動拡散では核
膜を通過できない。



ドラッグデリバリーシステム
高分子医薬品のドラッグデリバリーシステムでは下記のようなものが知られている。

吸収や分布の制御

高分子医薬品の吸収や分布を変更する方法論として吸収促進薬などの添加物を利用す
る方法、薬剤の分子構造修飾、薬剤の剤形修飾といった方法がある[13]。

吸収促進薬の利用
詳細は「吸収促進薬」を参照
胆汁酸[14]およびカプリン酸[15]などの脂肪酸および脂肪酸誘導体が強力な吸収促進作
用を有することは1980年代からひろく知られている[16][17]。臨床応用としてアンピシリン

およびセフチゾキシムの小児用坐薬にカプリン酸ナトリウムが用いられた例がある。これ
は唯一の吸収促進薬の臨床応用である。吸収促進効果が強い吸収促進薬は粘膜障害
が強い傾向があり開発が困難であった。吸収促進薬の作用機序はタイトジャンクションの
開口作用あるいは吸収細胞膜の脂質2分子膜の撹乱作用が提唱されるが未だに定説に
は至っていない[18]。細胞膜透過ペプチドやタイトジャンクションモジュレーターなど新しい

タイプの吸収促進薬も開発されている。吸収促進薬は従来、消化管吸収経路に用いられ
てきたが近年は経鼻、経肺、口腔、直腸、経皮など各種粘膜吸収経路のほか、血液脳関
門の通過技術としても利用される。



薬剤の分子構造修飾

吸収促進薬を利用する場合は対象薬物以外の非特異的な物質が通過するため副作用
が懸念される。そのため薬物の分子構造自体に何らかの修飾基によって化学修飾する
ことがある。この方法は実用例も多くアンピシリンのプロドラッグであるピバンピシリンや
タランピシリンなどが知られている。よく用いられる化学修飾は脂肪酸修飾、糖修飾、胆
汁酸修飾、ジペプチド化、トランスフェリンによる修飾、細胞膜透過ペプチドなど塩基性
アミノ酸による修飾がある。糖修飾ではグルコーストランスポーター、胆汁酸では胆汁酸
トランスポーター、ジペプチド化ではペプチドトランスポーター1を利用しトランスサイトー
シスの機序で吸収を促進すると考えられている。

薬物の剤形修飾
微粒子キャリアを用いて剤形修飾する場合がある。

標的指向性の制御

薬物に生体内で標的部位に指向する性質を与えることを標的指向性の制御あるいは
ターゲティングという。生体機能を積極的に利用する試みを能動的ターゲティング(active 
targeting)といい、生体内の非特異的な物質輸送の特性を受身的に利用する場合は受
動的ターゲティング(passive targeting)という。ターゲティングには特定の物質とのコン
ジェゲートする場合と微粒子キャリアを用いる場合がある。



特定の物質とのコンジェゲート
抗体、リガンド、細胞膜透過ペプチドあるいはポリエチレングリコール(PEG)や糖鎖な
どを結合してターゲティングを行うことができる。

糖修飾

ガラクトースあるいはマンノースを有する高分子・微粒子がそれぞれ肝細胞に発現す
るアシアロ糖タンパク質レセプター、クッパー細胞および類洞内皮細胞に発現するマ
ンノースレセプターを介して特異的に取り込まれる現象を利用してこれらの細胞に薬
物ターゲティングが可能である。

PEG化
ポリエチレングリコール(PEG)で化学修飾することをPEG化(PEGylation)という。インター
フェロンα、アスパラギナーゼ、顆粒球コロニー刺激因子などで肝臓、腎臓の代謝・排
出を抑制し、生体内半減期を大幅に延長した。



膜透過ペプチド
詳細は「細胞膜透過ペプチド」を参照
膜透過ペプチド（cell penetrating peptide、CPP）は細胞内に導入したい高分子と結合させる

ことで高分子を細胞内に導入させる機能のあるペプチドのベクターである。代表的な膜透過
性ペプチドベクターとしてはHIVのTatタンパク質のアミノ酸配列48-60位に対応するペプチド
配列（Tatペプチド）やオリゴアルギニンなどの塩基性アミノ酸に富むもの、Drosophiaの
antennapediaタンパク質由来ペプチド（penetratin）などの塩基性部分と疎水性部分を有す
る両親媒性ペプチド、神経ペプチドgalaninとハチ毒mastroparanのキメラペプチドである
transportan、あるいはその短縮形であるTP10など、疎水性配列に若干の塩基性配列を含
むペプチドなどがあげられる。特にTatペプチド、オリゴアルギニン、penetratinがよく用いら
れる。Tatペプチド、オリゴアルギニンではアルギニンのグアニジノ基が膜透過の本質を担っ
ていると知られている。そのためグアニジノ基を有するβ-ペプチド、ペプトイド、カルバメート

など天然アミノ酸以外のポリマー、直鎖構造を持たないデンドリマー型分子や糖鎖の誘導
体など新しいベクターも開発されている。Tatペプチド、オリゴアルギニンを含む高分子の細

胞内の取り込みにはクラスリンエンドサイトーシスに加えマクロピノサイトーシスが関与する
ことが知られている。Tatペプチド、オリゴアルギニンが正に帯電しており細胞表面のプロテ
オグリカン（負に帯電）と相互作用によりマクロピノサイトーシスが促進すると考えられている。



抗体薬物複合体

抗体は高い抗原特異性を有することから、これに他の化合物を結合することで抗原を
発現する細胞への特異的ターゲティングが可能である。例えば抗CD20マウスモノク
ローナル抗体に放射性同位体を結合すれば、CD20陽性細胞の近傍に放射性同位体
をターゲティングしてβ線やγ線でCD20陽性細胞を傷害することができる。このような医
薬品の代表例がゼヴァリンである。またカドサイラは乳癌の治療薬であるが抗HER2ヒト
化モノクローナル抗体であるトラスツズマブにチューブリン重合阻害薬のDM1を結合し
ている。またゲムツズマブオゾガマイシンは急性骨髄性白血病細胞に高発現するCD33

に対する抗体と、強力な殺細胞効果をもつ抗がん剤のカリケアミシンを結合させたもの
である。

微粒子キャリア
微粒子キャリアには脂質ナノ粒子（lipid nanoparticle、LNP）と高分子マトリクス微粒子
がある。LNPにはリポソーム、リピッドマイクロスウェア、高分子ミセルが知られている。



抗体薬物複合体

抗体は高い抗原特異性を有することから、これに他の化合物を結合することで抗原を
発現する細胞への特異的ターゲティングが可能である。例えば抗CD20マウスモノクロー
ナル抗体に放射性同位体を結合すれば、CD20陽性細胞の近傍に放射性同位体をター
ゲティングしてβ線やγ線でCD20陽性細胞を傷害することができる。このような医薬品の
代表例がゼヴァリンである。またカドサイラは乳癌の治療薬であるが抗HER2ヒト化モノク
ローナル抗体であるトラスツズマブにチューブリン重合阻害薬のDM1を結合している。
またゲムツズマブオゾガマイシンは急性骨髄性白血病細胞に高発現するCD33に対する
抗体と、強力な殺細胞効果をもつ抗がん剤のカリケアミシンを結合させたものである。

微粒子キャリア
微粒子キャリアには脂質ナノ粒子（lipid nanoparticle、LNP）と高分子マトリクス微粒子が
ある。LNPにはリポソーム、リピッドマイクロスウェア、高分子ミセルが知られている。



リピッドマイクロスフェア

高カロリー輸液に用いられる脂肪乳剤は精製大豆油を高度精製卵黄レシチンで
乳化した脂肪微粒子（Lipid microsphere、リピッドマイクロスフェア）から成り立って

いる。脂肪乳剤は臨床においてはイントラリポス、イントラファット等の名で使用さ
れ、安全性や安定性は十分に確立されている。脂肪性の薬物をこの脂肪微粒子
に溶解させ、これをキャリアとして薬物の安定化や病巣へのターゲティングを狙っ
たものをリポ剤とよぶ。リポ剤の例としては関節リウマチ治療薬のデキサメサゾン
パルミコート（リメタゾン）、NSAIDsのフルルビプロフェンアキセチル（ロピオン、リッ

プフェン）、慢性動脈閉塞症の治療薬のアルプロスタジル（パルクス、リプル）、静
脈麻酔薬のプロポフォール（ディプリバン）などが知られている。



高分子ミセル

高分子ミセルは高分子から成るミセル構造のことである。高分子ミセルを薬物キャリア
としての研究は1980年代に始まったものでリポゾームなどの他のキャリアに比べると新
しい部類になる。代表的な構成は親水性の鎖（A鎖）と疎水性の鎖（B鎖）からなるブロッ
クコポリマーが、B鎖の部分を内核として数十~数百個の高分子が会合して形成する構
造で内核に疎水性の薬物を内包する。B鎖としては疎水性鎖以外にも、鎖間に相互作

用を生じる種類の高分子を用いることも可能である。例えば、イオン相互作用を生じる
荷電性高分子鎖である。水溶性のA鎖としてはポリエチレングリコール（PEG）が用いら

れることが多い。最も標準的な構造は疎水性の低分子薬物を内包する球状ミセルであ
る。リポソームでは水相に親水性の低分子薬物を内包することができるが標準的な高
分子ミセルでは親水性薬物の封入が困難であるなど高分子ミセルとリポソームではい
くつかの違いがある。高分子ミセルは疎水性薬物に対して大きな内包量をもつこと、
10~100nmの小さな粒径が得られること、薬物放出速度の広い範囲での制御が可能な

ことなどはリポソームと比べて遊離な点である。しかし親水性薬物の封入が困難なこと、
薬物封入法が未発達なこと、比較的に高度な高分子設計・合成が必要なことなどはリ
ポソームより不利な点である。

核酸医薬など親水性の高分子はPICミセルなど特殊なミセルを用いる。天然高分子と異

なり化学合成した高分子には分子量にばらつきがあり分子量分布があるという。分子
量は平均分子量で表現される。



特殊な分布
EPR効果

固形がん組織では正常組織と比べて新生血管の増生と血管壁の著しい透過性の亢進
があることから数十nmサイズのキャリアが固形がん組織に集積しやすいことが知られ
EPR効果（enhanced permeation and retention effect）といわれる。

抗体医薬品の体内動態

抗体医薬品は高分子医薬品のなかでもとりわけ血中半減期が長いことが特長としてあ
げられる。この主要因として内在性のIgGの分解抑制に機能するFcRn（neonatal Fc 
receptor）を介したリサイクリング促進機構の存在があげられる[19]。もともとFcRnは新
生児の小腸に大量に発現し、母乳中のIgGのFc領域と結合してエンドサイトーシスによ
りIgGを効率よく体内に取り込む機能を果たすことが知られていた。その後FcRnが新生
児の小腸に限らず、成人の多くの組織にも発現していることが示された。またFcRnが
FcRn（α鎖）とβ2ミクログロブリン（β2-mivroglobulin、β2m）でヘテロ二量体を形成する受
容体であることが明らかになり、β2mやFcRn（α鎖）のノックアウトマウスにおいてIgGの
血中半減期が著しく短縮した[20]。このことからFcRnはIgGの半減期の延長に寄与する
受容体と考えられている。



FcRnとIgGの結合はpH依存的であり、エンドソーム内のpH6.0-6.5程度の酸性条件
下では強固に結合するが、pH7.0～7.5程度の中性条件下では解離する特性があ
る。そのためIgGはピノサイトーシスによって取り込まれた後に、主に細胞内に局在
するFcRnとエンドソーム内でIgGのFc領域と強固に結合する。その後、IgG-FcRn複
合体は細胞表面にリサイクリングされた後、細胞表面の中性環境においてIgGが
解離することで血中に再び戻る。FcRn依存的な抗体の半減期延長効果は、IgGの
血中半減期が21日程度に対して、他の免疫グロブリンの抗体の血中半減期が2～
10日であることからIgG選択的である。FcRnとFc領域の結合性は動物種が異なると

親和性が低下することが知られており、これまでに開発されてきた抗体医薬品の
ヒトにおける血中半減期を調べると、一般的な傾向として、マウス抗体、キメラ抗体
（マウス抗体の可変部とヒト抗体の定常部）、ヒト化抗体（超可変部がマウス抗体
由来でそれ以外はヒト抗体と同等）、ヒト抗体の順に半減期が長くなる。また融合
蛋白質がもつFc領域のFcRnに対する親和性はIgGそのもののFc領域と比較して低
い。FcRnによる半減期延長効果を狙った融合蛋白質医薬品を開発してもIgGほど
の長い半減期は得られない可能性がある。



可溶性抗原を標的とする複数の抗体関連医薬品について、pH6.0におけるヒトFcRnに
対する解離定数とヒトで血中半減期の間には負の相関関係も報告されている[21]。こ
れらより、弱酸性領域におけるFcRnとの結合親和性が血中半減期の延長効果を決定
する要因になっていることが示唆されている。

また抗体医薬品のクリアランスは、その標的蛋白質が可溶性抗原か受容体など膜結
合性抗原かによって異なる。一般的な特徴として、膜結合性抗原を標的とする抗体医
薬品のクリアランスは、可溶性抗原を標的とする抗体医薬品よりも大きい傾向がある
とともに投与量依存的にクリアランスの低下がみられるケースが多いことが知られて
いる[22]。その原因としては標的が可溶性抗原の場合は、主なクリアランス機構が細
網内皮系（RES）による非特異的な貪食であることから、抗原の種類によらず類似の動

態特性を示すのに対して、標的が膜結合性抗原の抗体の場合は、主なクリアランス機
構として細網内皮系による非特異的な貪食に加えて、標的と抗体の複合体が複合体
が受容体介在性エンドサイトーシス（RME）により内在化することに始まる標的依存的

なクリアランスの飽和で説明される。したがって、標的が膜結合性抗原の抗体の高投
与量条件下でのクリアランスは、その標的が可溶性抗原の抗体のクリアランスに近づ
くような挙動をとる。



その他、抗体医薬品の特有のクリアランス機構としては、同じくIgGのFc領域が結
合するFcγ receptor（FcγR）があげられる。FcγRを介したクリアランスの詳細な分子

メカニズムやクリアランスの制御に対する定量的な役割は明確にされていない。
しかしFcγRの遺伝子変異がIgGでコーティングされた赤血球の血中半減期に影響
を与えることから[23]、FcγRは可溶性抗原-抗体複合体の受容体介在性エンドサイ
トーシスによる細胞内代謝に一部関与している可能性が考えられる。



遺伝子組換え（リコンビナント）型の高分子医薬品の体内動態

主に天然型と遺伝子組換え（リコンビナント）型の高分子医薬品の体内動態の
差異について述べる。高分子医薬品の多くは糖蛋白質であり、遺伝子組み換え
で大腸菌につくらせたリコンビナント型(r)蛋白質は天然型(n)蛋白質と異なり糖

鎖が欠けている。これまでの研究から、糖鎖の有無が高分子医薬品の体内動
態に大きな影響をおよぼす事例が数多く報告されており、その性質を利用する
ことで意図的に糖鎖を改変した高分子医薬品の創製も進んでいる。古くは例え
ばモデル化合物として血清アルブミンを異なる糖鎖修飾すると肝臓への取り込
みに著しい差が生じることが知られている。これは糖鎖認識に基づく受容体介
在性エンドサイトーシス機構の関与が考えられる。事実、IL-2を静脈注射後の体
内動態では、r型の消失がn型よりも著しく速い[24]。IFNβについては筋注ではr
型はn型よりも著しく速く血中から消失するが、静注時においては両者間に大き

な差はみられず、糖鎖の有無により、筋注局所もしくは筋肉から血液への移行
過程の動態に差が生じるものと考えられている[25]。



ゴーシェ病は遺伝的にグルコセレブロシダーゼという酵素の機能が欠損して言う難病で
ある。糖脂質をセラミドに分解できないため、糖脂質が細網内皮系の細胞に蓄積するこ
とで全身性の症状を引き起こす。この治療法の1つとして酵素補充療法が知られている。

酵素補充療法では外来的に酵素を投与することでクッパー細胞やマクロファージにグル
コセレブロシダーゼを供給する方法が考えられたが、酵素自身を単独で投与しても効果
があまり認められなかった。その原因としては外来的に投与した酵素がクッパー細胞や
マクロファージに到達しないことがあげられた。そこでグルコセレブロシダーゼに付加す
る糖鎖の末端をマンノースにすることで肝臓のクッパー細胞に高発現するマンノース受
容体に認識させ、効率よく酵素を到達させることに成功した。糖鎖修飾型グルコセレブロ
シダーゼはイミグルセラーゼ（商品名セレザイム）として上市されている。

またエリスロポエチン(EPO)の半減期を延長するために糖鎖を増加したダルベポエチンα
（商品名ネスプ）が開発されている。エリスロポエチンは3つのN-結合糖鎖と1つのO-結合
糖鎖をもち、糖鎖の末端に存在するシアル酸の数を減少させると、in vitroの活性は増加
するが、逆にin vitroの活性は減少することが知られていた。ダルベポエチンαはEPOの5
箇所のアミノ酸残基を改変し、新たに2箇所N-結合糖鎖を付加させることにより、受容体
へのEPO結合親和性は減少し、血中半減期がEPOの約3倍に延長した結果、in vivo活性
が増加した[26]。それゆえ、従来の週3回投与から週1回投与が可能となった。



核酸医薬の薬物動態学

体内動態

薬の動態は脂溶性や分子量や電荷などに代表される薬物の物理化学的性質と血流や臓
器サイズなどの生体側の特徴で決まる。薬物の分子量が大きくなるにつれて薬物が移行
可能な臓器や組織は制限される。特に脳や筋肉では毛細血管の内皮細胞が連続内皮で
あるために毛細血管の透過は制限される。核酸医薬の基本単位であるヌクレオチドの分
子量は310～330程度であり、修飾核酸でもその値は大きく変わらないことが多い。核酸医
薬では最小のもので分子量4,000程度であり、2本鎖RNAであるsiRNAの場合は分子量
13,000程度になる。分子量4000程度の最小の核酸医薬であっても連続内皮の毛細血管

を自由に通過することはできない。分布可能な臓器は肝臓、脾臓、腎臓、骨髄など有窓内
皮、不連続内皮から構成される毛細血管のある臓器である。例外として固形がん組織で
は正常組織と比べて新生血管の増生と血管壁の著しい透過性の亢進があることから数十
nmサイズのキャリアが固形がん組織に集積しやすいことが知られEPR効果(enhanced 
permeation and retention effect)といわれる。EPR効果によって高分子が蓄積しやすい固

形腫瘍には核酸医薬も到達可能である。実際に静脈内や腹腔内に投与された核酸は、こ
れらの臓器に集積する傾向がある。もうひとつの例外が筋ジストロフィーにおける筋組織
である。通常は筋組織は連続型毛細血管をもつため核酸医薬は通過できない。しかし筋
ジストロフィーのように筋細胞の壊死・再生が活発な病態では筋組織に効率よくオリゴヌク
レオチドが取り込まれる。



分子量が約40,000以下の高分子の場合、あるいは5nm未満のサイズの場合は腎臓の

糸球体濾過も体内動態を決定する過程として重要である。タンパク結合率が低い場合
には、循環血液中の核酸医薬は速やかに糸球体濾過によって血中濃度が減少する。
またマクロファージなどの細胞に発現するスカベンジャーレセプターなどは、ポリアニオ
ンを認識し、これをエンドサイトーシスにより取り込み、分解することが知られている。天
然型の核酸はリン酸ジエステル結合を有するポリアニオンであることから、ポリアニオ
ンを認識する機構により除去されることが報告されている[30]。特に100nm以上のサイ
ズになると肝臓や肺などに存在する貪食細胞によって認識されやすく排除されてしまう。

天然型のリン酸ジエステル結合からなる核酸はヌクレアーゼにより速やかに分解され
る。核酸医薬の作用は量反応関係があるため分解や消失による濃度減少を抑制する
ことは非常に重要である。核酸が体内で速やかに分解される現象の対策としてホスホ
チオエート化に代表される安定化誘導体が開発されてきた。また多くの核酸医薬は腎
糸球体の濾過の閾値よりもサイズが小さい。したがって、血液中で血漿タンパク質と結
合しない場合は速やかに腎排泄される。この過程は分子サイズに依存することからポ
リエチレングリコール（PEG）などの高分子修飾や高分子修飾やタンパク結合性を増大
することで速やかな腎排泄の制御が可能と考えられている。



細胞膜透過

核酸医薬のようなオリゴヌクレオチドは細胞にとって不要であるため細胞内への移行は
大きく制限されると考えられている。一般的にオリゴヌクレオチドを含める高分子は主に
エンドサイトーシスによって取り込まれる。よく知られた核酸医薬のエンドサイトーシスに
関わる受容体を下記のようにまとめる。



細胞内移行後も細胞膜を通過していないため、オリゴヌクレオチドが細胞質や核に移
行する可能性は非常に低い。一般的にエンドサイトーシスによって取り込まれた分子
はエンドソームへ輸送され、その後、加水分解酵素を含むリソソームへ輸送され、分
解される。膜透過性の乏しい活性分子の透過性改善を目的としてDDSの分野では

様々な方法が提唱されている。その多くは核酸医薬に対しても適応されている。その
一例としてはコレステロールなどの脂溶性化合物を利用した修飾があげられる。これ
は、水溶性高分子である核酸医薬の疎水性を増大することで、細胞膜との相互作用
を高め、結果的に細胞膜を介する輸送効率を高めることを目的としたものである。コ
レステロールの他には膜透過ペプチドや正電荷を有するアルギニン誘導体などを結
合させる方法やリポソームなどの脂質微粒子やポリカチオンなども開発されている。
核酸と細胞膜との相互作用の増大と膜構造不安定化により、核酸医薬の膜透過性
改善は実現可能と考えられている。

細胞膜の透過に関しては一本鎖のアンチセンス核酸と二本鎖のsiRNAでは異なる点
がある。アンチセンス核酸の場合は培養細胞の実験の場合は数100nMまで濃度を
挙げると細胞内に取り込まれるが、二本鎖のsiRNAは取り込まれない。またアンチセ
ンス核酸はGapmer型アンチセンスでもスプライシング制御型アンチセンスであって
も核内で機能するため核膜を通過する必要がある。siRNAは細胞質で作用するため
核膜を通過する必要はない。



統計学と生物学の邂逅から、バイオインフォマティクスが
生まれている

遺伝子の構造をシミュレーションによって決定することや
高分子の構造を可視化、さまざまな化学反応において、
コンピュータとソフトウェアを使って表現できるようになっ
ている。このような操作を現実の実験データをウェットな
操作と表現するのに対し、ドライな操作、と呼ぶ。



このコンテンツは、高校を卒業したばかりの数学の知識で理
解することを優先した実務で使う統計処理のあらましを知る

目的で作成しました。

さらに、数理統計学を学ぶことで、平均や分散という概念を
掘り下げて考えられるようになると、将来機械学習や人工知
能といわれる情報処理のあらましが理解しやすくなります。

継続した学習を望みます。
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