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Discussion, questions and answers

The statistical analysis of the data is an essential
stage in the process of quantitative research. The
principles of inferential statistics, as introduced in
this section, are applied for deciding if the obtained
sample data show the differences and patterns we
set out to demonstrate in the population. This
is the case for all types of research where we are
using sample data to make inferences concerning
populations.

Quantitative research in the health sciences
mostly involves working with samples drawn
from populations. In order to generalize our find-
ings, we must draw generalizations and inferences
from sample statistics (e.g. X, s) to the population
parameters (e.g. p, o). Inferences are always prob-
abilistic, because even with random samples there
is always the chance of sampling error. The finite
probability of sampling error implies that the dif-
ferences or patterns identified in our sample data
could represent random variations or chance pat-
terns rather than ‘real’ ones which are true for the
population as a whole.
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As an illustration, imagine that we have collected
data in a study aimed at identifying age-related dif-
ferences in the use of sedatives and tranquillizers
in a given population. Our participants (n = 200)
kept diaries over a period of 1 year, recording each
time they had taken a sedative or tranquillizer. The
research question is: is there a difference between
sedative or tranquillizer use in older and younger
people? Assume that the following hypothetical
data were obtained:

Sedative and tranquillizer consumption

| Agegrawn -
20-39 100 20 5
40-59 100 30 5

Three important and interrelated questions are
examined in Section 6 concerning the evidence

191



Inferential statistics

provided by sample data such as those shown in
the above table.

1. Even if we used an adequate sampling procedure
(see Ch. 3), how confident are we to infer that the
true population parameters () are the same as, or
are at least close to, X? For example, is it true that
the mean tranquillizer intake for the 20-39 age
group is p = 20?

2. It appears that there is a large difference between
the two sample means; but is this difference also
true for the populations? In other words is this
difference ‘real’ or significant, or is it simply due to
sampling error?

3. What we are inferring is p older > . younger. In
other words, are we justified in concluding that
the mean sedative/tranquillizer intake for the older
age group is greater than for the younger group in
the population?

The key issue here is that we are using sample
data for decision making. Sampling error refers to
the difference between sample statistics and the
actual state of the population.

We cannot eliminate sampling error even with
large and well-chosen samples. Rather, as outlined
in Section 6, we can apply the principles of infer-
ential statistics to calculate the probability of error.
We then use this information to minimize the
probability of making errors when we generalize
from sample statistics to population parameters.

In Chapter 17 we examine how sampling dis-
tributions are derived and used for calculating the
probability of obtaining a given sample statistic.
This information can be applied to the calculation
of confidence intervals, which represent a range of
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scores which contain the true population param-
eter at a given level or probability.

In Chapter 18 we outline the logic of hypoth-
esis testing, using single sample z and t tests as
exemplars. Hypothesis testing is a procedure used
to decide if a difference or pattern identified in
our sample data is statistically significant. If the
outcome of our analysis is significant, then we are
in a position to decide that the patterns or differ-
ences found in our data may be generalized to the
populations from which the samples were drawn.

There are numerous statistical tests available for
analysing the significance of our data. In Chapter 19
we discuss basic criteria for selecting an appropri-
ate statistical test, including (i) scale of measure-
ment used to collect the data, (ii) the number of
groups being compared and (iii) the dependence
or independence of measurements. We will use the
X? (chi-squared) test to demonstrate how statisti-
cal tests are selected and used to analyse the data.

Ultimately, statistical decision making is prob-
abilistic, implying that the possibility of making
decision errors cannot be eliminated. Decisions
may be correct, or involve what are called Type 1
and Type II errors. In Chapter 20, we examine
how these errors may influence our interpret-
ation of the obtained data in relation to the aims
or hypotheses guiding our research, and we will
examine strategies which can be employed to
reduce the probability of making such errors. In
this chapter we outline the relationship between
effect size and the clinical or practical significance
of research findings.
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Introduction

Sample statistics (such as X, s) are estimates of
the actual population parameters p, 6. Even where
adequate sampling procedures are adopted, there
is no guarantee that the sample statistics are the
exact representations of the true parameters of the
population from which the samples were drawn.
Therefore, inferences from sample statistics to
population parameters necessarily involve the pos-
sibility of sampling error. As stated in Chapter 3,
sampling errors represent the discrepancy between
sample statistics and true population parameters.
Given that investigators usually have no knowledge
of the true population parameters, inferential
statistics are employed to estimate the probable
sampling errors. While sampling error cannot be
completely eliminated, its probable magnitude can
be calculated using inferential statistics. In this
way investigators are in a position to calculate the
probability of being accurate in their estimations
of the actual population parameters.

The aims of this chapter are to examine how
probability theory is applied to generating sam-
pling distributions and how sampling distributions
are used for estimating population parameters.
Sampling distributions can be used for specifying
confidence intervals, as discussed in this chapter, as
well as for testing hypotheses, as further discussed
in Chapter 18.
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Probability and sampling distributions

The specific aims of this chapter are to:

1. Define probability.

2. Demonstrate how sampling distributions are
generated.

3. Show how sampling distributions of the mean
are used to calculate the probability of a sample
mean.

4. Explain how confidence intervals are calculated
for continuous data.

5. Distinguish between z and t distributions.

Probability

The concept of probability is central to the under-
standing of inferential statistics. Probability is
expressed as a proportion between 0 and 1, where
(0 means an event is certain not to occur, and 1
means an event is certain to occur. Therefore if
the probability (p) is 0.01 for an event then it is
unlikely to occur (chance is 1 in a hundred). If
p = 0.99 then the event is highly likely to occur
(chance is 99 in a hundred). The probability of
any event (say event A) occurring is given by the
formula:

number of occurrences of A
p(A) = -

total number of possible occurrences

Sometimes the probability of an event can be
calculated a priori (before the event) by reasoning
alone. For example, we can predict that the prob-
ability of throwing a head (H) with a fair coin is:

number of occurrences of H

p(H) =

total number of possible occurrences

H 1

H + T(tails) 2

Or, if we buy a lottery ticket in a draw where there
are 100000 tickets, the probability of winning first
prize is:

1

—— = 0.00001
100000

p(1st prize) =

This is true only if the lottery is fair, if all tickets
have an equal chance of being drawn by random
selection.
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In some situations, there is no model which we
can apply to calculate the occurrence of an event
a priori. For instance, how can we calculate the
probability of an individual dying of a specific
condition? In such instances, we use previously
obtained empirical evidence to calculate probabili-
ties a posteriori (after the event).

For example, if it is known that the percent-
ages (or proportions) for causes of death are dis-
tributed in a particular way, then the probability
of a particular cause of death for a given individ-
ual can be predicted. Table 17.1 represents a set
of hypothetical statistics for a community.

Given the data in Table 17.1, we are in a pos-
ition to calculate the probability of a selected
individual over 65 dying of any of the specified
causes. For example, the probability of a given
individual dying of coronary heart disease is:

p(dying of heart disease)
_ Y% of cases dying of heart disease
100%

50% _
100%

This approach ignores individual risk factors and
assumes that the environmental conditions under
which the data were obtained are still pertinent.
However, the example illustrates the principle
that once we have organized the data into a fre-
quency distribution we can calculate the probabil-
ity of selecting any of the tabulated values. This is
true whether the variable was measured on a nom-
inal, ordinal, interval or ratio scale. Here, we will

'Tahlle j_?.l_ qu_s.es'pf _de_'c_xth _fqrpersons over 65 s

) _ Percentage of ¢
Coronary heart disease 50
Cancer 25
Stroke 10
Accidents 5
Infections 5
Other causes 5



examine how to calculate the probability of values
for normally distributed, continuous variables.

We can use the normal curve model, as outlined
in Chapter 15, to determine the proportion or per-
centage of cases up to, or between, any specified
scores. In this instance, probability is defined as the
proportion of the total area cut off by the specified
scores under the normal curve. The greater the
proportion, the higher the probability of selecting
the specified values.

For example, say that on the basis of previous
evidence we can specify the frequency distribution
of neonates’ weight. Let us assume that the distri-
bution is approximately normal, with the mean (X)
of 5.0kg and a standard deviation (s) of 1.5. Now,
say that we are interested in the probability of a
randomly selected neonate having a birth weight
of 2.0kg or under. Figure 17.1 illustrates the above
situation.

The area Al under the curve in Figure 17.1 cor-
responds to the probability of obtaining a score
of 2 or under. Using the principles outlined in
Chapter 15 to calculate proportions or areas under
the normal curve, we first translate the raw score
of 2 into a z score:

Now we look up the area under the normal
curve corresponding to z = —2 (Appendix A). Here
we find that Al is 0.0228. This area corresponds

Frequency
I

Figure 17.1 » Frequency distribution of neonate birth
weights. Area A1 corresponds to z < -2.

Probability

to a probability, and we can say that ‘The prob-
ability of a neonate having a birth weight of 2kg
or less is 0.0228'. Another way of stating this out-
come is that the chances are approximately 2 in
100, or 2%, for a child having such a birth weight.

We can also use the normal curve model to cal-
culate the probability of selecting scores between
any given values of a normally distributed contin-
uous variable. For example, if we are interested in
the probability of birth weights being between 6
and 8kg, then this can be represented on the nor-
mal curve (area A2 on Fig. 17.2). To determine
this area, we proceed as outlined in Chapter 15.
Lets = 1.5.

[=)]

! 1.5
-5

2 1.5

Therefore: the area between z, and X is 0.2486
(from Appendix A) and the area between z,
and X = 0.4772 (from Appendix A). Therefore,
the required area A2 is:

A2 =0.4772 - 0.2486 = 0.2286

It can be concluded that the probability of a ran-
domly selected child having a birth weight between
6 and 8kg is p = 0.2286. Another way of saying
this is that there is a chance of 23 in 100 or a 23%
chance that the birth weight will be between 6
and 8kg.

w

0.67

N
I
Il

oo

z 2.0

Frequency
1

Figure 17.2  Frequency distribution of neonate birth
weights. Area A2 corresponds to probability of weight
being 6-8kg.
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The above examples demonstrate that when the
mean and standard deviation are known for a nor-
mally distributed continuous variable, this informa-
tion can be applied to calculating the probability
of events related to this distribution. Of course,
probabilities can be calculated for other than nor-
mal data but this requires integral calculus which
is beyond the scope of this text. In general, regard-
less of the shape or scaling of a distribution, scores
which are common or ‘average’ are more likely to
be selected than those which are atypical, being
unusually high or low.

Sampling distributions

Probability theory can also be applied to calculate
the probability of obtaining specific samples from
populations.

Consider a container with a very large number
of identically sized marbles. Imagine that there
are two kinds of marbles present, black (B) and
white (W), and that these colours are present in
equal proportions, so that p(B) = p(W) = 0.5.

Given the above population, say that samples
of marbles are drawn randomly and with replace-
ment. (By ‘replacement’ we mean the samples are
put back into the population, in order to maintain
as a constant the proportion of B = W = 0.5.) If
we draw samples of four (that is, n = 4) then the
possible proportions of black and white marbles
in the samples can be deduced a priori as shown
in Figure 17.3.

Possible outcomes Number Number | Proportions
black white black
o000 4 0 1.00
| N N N 3 1 075
® 0O O] 2 050
® OO O] 1 3 025
O OO0 o 4 0.00

Figure 17.3 » Characteristics of possible samples of n = 4,
drawn from a population of black and white marbles.
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Ignoring the order in which marbles are
chosen, Figure 17.3 demonstrates all the pos-
sible outcomes for the composition of samples
of n = 4. It is logically possible to draw any of
the samples shown. However, only one of the
samples (2B, 2W), is representative of the true
population parameter. The other samples would
generate incorrect inferences concerning the
state of the population. In general, if we know
or assume (hypothesize) the true population
parameters, we can generate distributions of
the probability of obtaining samples of a given
characteristic.

In this instance, when attempting to predict
the probability of specific samples drawn from
a population with two discrete elements, the
binomial theorem can be applied. The expansion
of the binomial expression, (P + Q)", generates
the probability of all the possible samples which
can be drawn from a given population. The gen-
eral equation for expanding the binomial expres-
sion is:

(P+ Q) = Pn +1ll-P""Q+

2n 1) pu2gz | on
2

P is the probability of the first outcome, Q is the
probability of the second outcome and n is the
number of trials (or the sample size).

In this instance, P = proportion black (B) = 0.5;
Q = proportion white (W) = 0.5; n = 4 (sample
size). Therefore, substituting into the binomial
expression:

(B+W)* = B* + 4B3W + 6B*W? + 4BW? + W+

Note that each part of the expansion stands for
a probability of obtaining a specific sample. For
the present case:

Sample 1 p(4BOW) =B = (0.5)* = 0.0625
Sample2p(3BIW) =4B'W =4 X (05)0.5) =0.2500
Sample 3 p(2B2W) = 6B2W? = 6 X (0.5)%(0.5)2 = 0.3750
Sample 4 p(1B3W) = 4BW® =4 X (0.5)%(0.5) = 0.2500

Sample 5 p(OB4W) =W* = (0.5)* = 0.0625



Sampling distribution of the mean

The calculated probabilities add up to 1, indicat-
ing that all the possible sample outcomes have been
accounted for. However, the important issue here
is not so much the mathematical details but the
general principle being illustrated by the example.
For a given sample size (1) we can employ a math-
ematical formula to calculate the probability of
obtaining all the possible samples from a popula-
tion with known parameters. The relationship
between the possible samples and their probabili-
ties can be graphed, as shown in Figure 17.4.

Taking the statistic ‘number of black marbles in
the sample’, the graph in Figure 17.4 shows the
probability of obtaining any of the outcomes. The
distribution shown is called a ‘sampling distribu-
tion’. In general, a sampling distribution for a stat-
istic indicates the probability of obtaining any of
the possible values of a statistic.

Therefore, having obtained our sampling dis-
tribution we can see that some sample outcomes
have low probability while others are more likely.
Although there is a finite chance of obtaining
a sample such as ‘all blacks’, the probability of
this happening is rather small (p = 0.0625).
Conversely, a sample of 2B2W, which is equal
to the true population proportions, is far more
probable (p = 0.375). Generating sampling dis-
tributions for calculating the probability of given
sample statistics is a basic practice in inferen-
tial statistics. The sampling distributions enable
researchers to infer (with a determined level of
confidence) the true population parameters from
the sample statistics.

04r

Probability
o o
[p6] (&)
T

o
X

o
o

’ |
Number of black marbles

Figure 17.4 = Sampling distribution of black marbles;
n=4,

Sampling distribution of
the mean

The binomial theorem is appropriate for generat-
ing sampling distributions for discontinuous nom-
inal scale data. However, when measurements are
continuous, the mean and standard deviations are
appropriate as sample statistics and are measured
on interval or ratio scales. The sampling distribu-
tion of the mean represents the frequency distri-
bution of sample means obtained from random
samples drawn from the population. The sampling
distribution of the mean enables the calculation of
the probability of obtaining any given sample
mean (X). This is essential for testing hypotheses
about sample means (Ch. 18).

In order to generate the sampling distribution
of the mean, we use a mathematical theorem
called the central limit theorem. This theorem
provides a set of rules which relate the parameters
(1, ) of the population from which samples are
drawn to the distribution of sample means (X).

The central limit theorem states that if ran-
dom samples of a fixed n are drawn from any
population, as n becomes large the distribution of
sample means approaches a normal distribu-
tion, with the mean of the sample means (X_ or
i) being equal to the population mean (j1) and the
standard error of estimate (s_ or o) being equal to
o/ . The standard error of the estimate is the
standard deviation of the distribution of sample
means.

Let us follow the above step by step.

1. Imagine we have a population of continuous
scores or measurements with a mean of pand a
standard deviation of o.

2. We select a very large number of random sam-
ples, each sample being of a size n.

3. Having obtained our samples, for each sample
we calculate the sample mean (X, X,, .. . and
SO on).

4. Each sample mean, X, is a number. The sampling
distribution of the mean is a frequency distribution
representing the large number of sample means.

- The central limit theorem predicts theoretically
the shape (normal for large n), mean (X or ;) and
standard deviation (s; or o;) of a large number of
sample means.

(41}
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It should be noted that:

1. The sampling distribution of the mean is a fre-
quency distribution of a large number of sample
means of size n drawn from a given population.
When n increases, the sampling distributions
approach normal.

2. The mean of the sample means (i, or X) is the
mean of the distribution of sample means. X; and
p; are equal to y, the population mean.

3. The standard error of the mean (s; or ¢;) is the
standard deviation of the frequency distribution
of sample means drawn from a population. The
magnitude of s, or o, is equal to o/V/, the popula-
tion standard deviation divided by the square root
of the sample size.

4. p; and o are used in reference to a sampling dis-
tribution based on all the possible samples drawn
from a population (a population of samples, would
you believe?), while X and s are used when the
sampling distribution is based on a ‘sample’ of
samples.

Let us have a look at an example. Assume for a
hypothetical test of motor function thatp = 50 and
o = 10. What is the probability of drawing a random
sample from this population with X =52 or
greater (i.e. X = 52) given that n = 100? The central
limit theorem predicts that when we draw samples
of n = 100 from the above population, the sampling
distribution of the means will be as follows:

° The shape of the sampling distribution will be
approximately normal.

¢ The mean of the sampling distribution will be
equal to

° The standard error of estimate (c;) will be:

I 10

O’;=7;-=—%-=1

(We can show this as in Fig. 17.5.)

Previously, we saw how we can use normal fre-
quency distributions for estimating probabilities.
Using the same principles as in Chapter 15, we
can calculate the z score corresponding to X = 52,
and look up Appendix A to find out the area
representing the probability in question:

X—p _52-50 _

o 1

2

z=
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Figure 17.5 ¢ Relationship between original population
and sampling distribution of the mean, where 1 = 50 and
o = 10; (A) original population, (B) sampling distribution of
the mean.

That is, X = 52 is two standard error units
above p, the population mean for the sample
means.

_ You may have noticed that the distribution of
X is far less dispersed than X (i.e. the raw scores),
aso, = land o = 10.

Using Appendix A for establishing the probabil-
ity, we find that the area representing p(X = 52),
that is, area Al in Figure 17.5B, is:

p(X = 52) = 0.5000 — 0.4772 = 0.0228

Therefore the probability of drawing a sample
of X = 52 is 0.0228. We will apply this notion to
hypothesis testing in Chapter 18, but you might
have noticed that it is a rather low probability. That
is, it is unlikely (p = 0.0228) randomly to draw a
sample with X = 52 where n = 100 and p. = 50.



Application of the central limit theorem to
calculating confidence intervals

Application of the central limit
theorem to calculating
confidence intervals

Let us assume that you are asked to estimate the
weight of a newborn baby. If you are experienced
in working with neonates, you should be able to
make a reasonable guess. You might say ‘The baby
is 6kg’. Someone might ask ‘How certain are you
that the baby is exactly 6kg?’ You might then say
‘Well, the baby might not be exactly 6kg, but I'm
very confident that it weighs somewhere between
5.5 and 6.5kg’. This statement expresses a con-
fidence interval — a range of values which prob-
ably include the true value. Of course, the more
certain or confident you want to be of including
the true value, the bigger the range of values you
might give: you are unlikely to be wrong if you
guess that the baby weighs between 4 and 8kg.

Confidence intervals can be calculated for a
large range of statistics such as proportions, ratios
or correlation coefficients. In this chapter we will
look at confidence intervals for single samples as
an illustration for using confidence intervals.

We have seen previously that if we know the
population parameters we can estimate the prob-
ability of selecting from that population a sam-
ple mean of a given magnitude. Conversely, if we
know the sample mean we can estimate the popu-
lation parameters from which the sample might
have come, at a given level of probability. Let us
take an example to illustrate this point.

A researcher is interested in the systolic blood
pressure (BP) levels of smokers of more than 10
cigarettes per day. She takes a random sample of
100 10+ smokers in her district and finds that
the mean BP = 148 mmHg for the sample, with a
standard deviation of s = 10.

She wants to generalize to the population of
smokers of more than 10 cigarettes per day in
their district. The best estimate of p (the popu-
lation parameter) is 148, but it is possible that,
because of sampling error, 148 is not the exact
population parameter. However she can calcu-
late a confidence interval (a range of blood pres-
sures that will include the true population mean
at a given level of probability). A confidence

interval is a range of scores which includes the
true population parameter at a specified level of
probability. The precise probability is decided by
the researcher and indicates how certain she can
be that the population mean is actually within the
calculated range. Common confidence intervals
used in statistics are 95% confidence intervals,
which offer a probability of p = 0.95 for includ-
ing the true population mean, and 99% confidence
intervals, which include the true population mean
at a probability of p = 0.99.

Calculating the confidence interval requires the
use of the following formula:

X-—zs,spsX+zs,

where X is the sample mean; z is the z score
obtained from the normal curve table such that it
cuts off the area of the normal curve correspond-
ing to the required probability; s, is the sample
standard error, which is equal to the sample stand-
ard deviation divided by n, that is, s, = s/ yn.

Let us turn to the previous example to illustrate
the use of the above equation. Here X = 148, and
s, =10/7100. Assume that we want to calculate a
95% confidence interval. We are looking for a pair
of z scores which have 95% of the standard normal
curve between them. In this case, 1.96 is the value
for z which cuts off 95% of a normal distribution.
That is, we looked up the value of z corresponding
to an area (probability) of 0.4750, since the 0.05
has to be divided among the two tails of the dis-
tribution, giving 0.025 at either end. Substituting
into the equation above we have:

148 — (1.96)(10A100) = p =< 148 + (1.96)
X (10/100) = 146.04 =< p = 149.96

That is, the investigator is 95% confident that
the true population mean, the true mean BP of
smokers, lies between 146.04 (lower limit) and
149.96 (upper limit). There is only a 5% or 0.05
probability that it lies outside this range. If we
chose a 99% confidence interval, then using the
formula as above, we have:

148 — (2.58)(10A/100) =< p = 148 + (2.58)
X (10/7100) = 145.42 < . = 150.58
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Confidence intervals where n is small: the t distribution

all but one of the scores could vary. That s, if you
were inventing scores in a sample with a known
mean, you would have a free hand until the very
last score. There df is equal to n — 1 (the sam-
ple size minus one). Each row of figures shown in
Appendix B represents the critical values of ¢ for
a given distribution.

1. The t distribution is symmetrical about the mean.

2. The values of t along the x-axis cut off specific
areas under the curve, just as for z. These areas
are given at the top of the page in Appendix B,
under ‘Directional’ and ‘Non-directional’
probabilities.

3. The t distribution approaches a normal distribu-
tion as n becomes larger. As stated earlier, when
n = 30, for all practical purposes the t and z distri-
butions coincide.

The t distribution, just as the z distribution, can
be used to approximate the probability of draw-
ing sample means of a given magnitude from a
population; ¢ can also be used for calculating con-
fidence intervals. Let us re-examine the example
relating to the blood pressure of smokers pre-
sented earlier. Let us assume that n = 25, with
the other statistics remaining the same: X = 148,
s = 10. The general formula for calculating the
confidence intervals for small samples is:

X—ts,spsX+is,

You will note the similarity to the equation on
page 199; here t replaces z. If we want to show
the 95% confidence interval, then we use the
same logic as for z distributions (Fig. 17.8).

To look up the t values from the tables
(Appendix B) consider (i) direction, (ii) probabili-
ties and (iii) degrees of freedom.

We are looking at a ‘non-directional’ or ‘two-
tail’ probability in the sense that the ¢ values cut
off 95% of the area of the t curve between them,
leaving 5% distributed at the two tails of the ¢ dis-
tribution: p = 0.05; df = 25 — 1 = 24. Therefore
t = 2.064 (from Appendix B). Substituting into
the equation for calculating confidence intervals:

148 — (2.1)(10A/25) = p =< 148 + (2.1)(10A/25)
148 — 4.2 = = 148 + 4.2
143.8 = p =152.2

Consider the width of the confidence interval
defined as the distance between the upper and
lower limits. Note that this is a wider interval
than that which was obtained when n was 100. As
sample size, n, becomes smaller, our confidence
interval becomes wider, reflecting a greater prob-
ability of sampling error.

To calculate the 99% confidence interval
(Fig. 17.9) we need to look up p = 0.01, non-
directional, df = 24 in Appendix B to obtain the
critical value of ¢, which is 2.797.

148 — (2.8)(10A/25) < 1 = 148 + (2.8)(10425)
142.4 = p = 153.6

Frequency

!
t=+2.064

t=-2.064 0

Figure 17.8 » The 95% confidence interval for sample
size of 25.

Frequency
1

Lo
t=-2.797 ] t=+2797

Figure 17.9 ¢ The 99% confidence interval for sample
size of 25.
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We can see that, when n = 25, the 99% con-
fidence interval is wider than for n = 100. That
is, the bigger our sample size, the narrower (more
precise) our estimate of the range of values (which
includes the true population parameter) becomes
when our sample size is large.

Summary

It was argued in this chapter that, even with ran-
domly selected samples, the possibility of sam-
pling error must be taken into account when
making inferences from sample statistics to popu-
lation parameters. It was shown that probabil-
ity theory can be applied to generating sampling
distributions, which express the probability of
obtaining a given sample from a population. With
discontinuous, nominal data the binomial theorem
provides an adequate mathematical distribution
for estimating the probability of obtaining pos-
sible samples. However, with continuous data, the
central limit theorem is applied to generate the
sampling distributions of the mean. The standard
distribution of the mean enables the calculation
of the probability-specified sample mean(s) by
random selection. The sampling error of the mean
(s; or 0.), which expresses statistically the range
of the sampling error, depends inversely on the
sample size, such that the larger the n, the smaller
thes oro,.

One of the applications of sampling distribu-
tions is for calculating confidence intervals for
continuous data. Confidence intervals represent a
range of scores which specify, from sample data,
the probability of capturing the true population
parameters.

Health researchers usually report 95% con-
fidence intervals. When sample sizes are small
(n < 30), the t distribution is appropriate for
representing the sampling distribution of the
mean. With large sample sizes, the two distribu-
tions merge together. As the next chapter will
demonstrate, sampling distributions are essential
for testing hypotheses, a procedure which uses
inferential statistics to calculate the level of prob-
ability at which sample statistics support the pre-
dictions of hypotheses.
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Probability and sampling distributions

Self-assessment

Explain the meaning of the following terms:

central limit theorem

confidence interval

degrees of freedom

population parameter

probability

sampling distribution

sampling distribution of the mean
sampling error

standard error of the mean

t distribution

True or false

1. If death and taxes are an absolute certainty,
then the probability of their occurrence is
infinite.

2. Probability values fall between 0 and 1.

3. When a score occurs at a relatively high level of
frequency the probability of randomly selecting it
from a distributionisp = 1.

4. The higher the corresponding z score, the lower
the probability of randomly selecting the score
from a distribution.

5. For a normal distribution, ¢ is the score
which has the highest probability of random
selection.

6. Itis possible to have a negative z score but not a
negative probability.

7. For a continuous normal distribution, the prob-
ability of selecting a score up to and including
the mode is p = 0.5.

8. The probability of randomly selecting a score
2 standard deviations above the mean is
p =02

9. We can generate appropriate sampling distri-

butions for statistics derived from nominal or

ordinal data.

Statistical inference involves the estimation of

population parameters from sample statistics.

11. Statistical inference depends on knowing the

true population parameters before beginning
research.

12. The sampling distribution of the mean is a fre-

quency polygon of mean scores.

13. Using the sample mean as an estimate for the

population mean is an example of statistical
inference.

10
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14. The sampling distribution of the mean is always
normally distributed.

15. As n increases, the variability of the sampling
distribution of the mean increases.

16. p, = p regardless of the shape of the sampling
distribution of the mean.

17. The characteristics of the sampling distribution
of the mean vary with the size of the sample.

18. If a random selection method is used, sampling
error will be zero.

19. The bigger the sampling error, the smaller the
confidence interval.

20. Generally speaking, the higher the level of
confidence we have that an interval contains the
population mean, the larger is that interval.

Multiple choice

1. The mean age of the Canadian population
is known to be 31 years. A small randomly
selected sample of Canadians is found to have a
mean age of 32. This discrepancy is an
example of:
a asampling error
b a measurement error
¢ a problem in ecological validity
d failure to control for the effects of
maturation.
At a large maternity hospital the following hypotheti-
cal data are compiled concerning the birth weights
and survival of neonates.

Numbers () Percentac

. neonate:

40

500-999 50 60
1000-1499 75 80
1500-1999 150 30
2000-2499 250 95
2500+ 450 98

Questions 2-5 refer to this table.

rviving |

N

Self-assessment

What is the probability that a randomly selected
neonate will weigh under 50097

a 0.4000
b 0.1700
c 0.0250
d 0.0025

. What is the probability that a randomly selected

neonate will have a birth weight of 2000g or over?
a 0.7000
b 0.9638
c 0.3000
d 0.9500

. What is the probability that a neonate weighing

4999 or under will survive?

a 0.4000

b 0.1700

c 0.040

d 0.025

What is the probability that a neonate weighing
25009 or over will not survive?

a 0.400

b 0.300

c 0.006

d 0.020

A test of reaction times has a mean of 10 and a
standard deviation of 4 in the normal adult popu-
lation with a normal distribution. Questions 6-12
refer to this information.

. A person scores 8. That person’s z score is:

a2
b -2
¢ —05
d -1

What percentage of the population would have
scores up to and including 14 on this test?

a 84.13
b 15.87
c 65.87
d 34.13

What is the percentile rank of a score of 8 on
this test?

a 19.15
b 30.85
c 80.85
d 53.28

What score (to the nearest whole number) would
cut off the highest 10% of scores?

a1
b 14
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10.

1.

12.

13.

14.

15.

16.

c 15

d 18

What is the probability that a randomly
selected individual will score greater than 6 on
this test?

a 0.4987

b 0.3413

¢ 0.8413

d 0.6587

What is the probability that a randomly selected
individual will score between 8 and 14 on this
test?

a 0.1498

b 0.5328

¢ 0.6816

d 0.4671

What is the probability that a randomly selected
individual will score either more than 14 or less
than 10 on this test?

a 0.6587

b 0.6816

c 0.3184

d 0.8184

Sampling error of the mean:

a occurs because of poor sampling techniques
b decreases as sample size increases

¢ is independent of the standard deviation

d is always equal to 1.

Samples of 100 are drawn from a normally
distributed population with a mean of 50 and

a standard deviation of 10. The distribution of
sample means will:

a have a mean of 50

b have a standard deviation of 1

¢ be normally distributed

d all of the above.

Increasing the sample size, n:

decreases sampling error

increases sampling error

has no effect on standard error of the mean

requires increasing correction of sample esti-
mates of population parameters

e none of these.

If the dispersion of the raw score population
increases while n is held constant, o

a decreases
b increases
¢ remains the same

d cannot be ascertained without more
information.

QO O o
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17.

18.

19.

Probability and sampling distributions

The sampling distribution of the mean:

a is always positively skewed for continuous
data

b is normally distributed if the population raw
scores are not normally distributed

¢ is approximately normally distributed if sam-
ple size is large

d all of the above.

As the degrees of freedom decrease, the similar-
ity between the t and z distributions:

a increases

b decreases

¢ remains the same

d approaches infinity.

The theoretical sampling distributions of the t
statistics depend on:

ap

br

cs;

d df.

A normally distributed population has a mean of 80
and a standard deviation of 12. Questions 20-24
refer to this information.

20.

21.

23.

For samples of n = 36, what is the standard
error of the mean?

a 12

b 0.33

c 2

d3

A sample of 64 cases is found to have a mean of
83. What is the z score of this mean?

a2

b 0.25

c 4

d 1.5

. A sample of n = 144 has a mean of 77. What is

the probability that a mean this low would occur
by chance?

a 0.0300
b 0.0013
c 0.4989
d 0.9987
A sample of 36 cases is selected. What is the

probability that its mean falls outside the range
of 79-81?

a 0.6813
b 0.8085
¢ 0.3085
d 0.6170



24. Which is more likely: that a randomly selected
sample of n = 36 will have a mean greater than
82 or that it will have a mean less than 777
a Greater than 82.
b Lessthan 77.
¢ Both are equally probable.
d Impossible to tell.
25. The t distribution differs from the z distribution in
which of these ways?
a Its mean is not exactly equal to 0.
b ltis not quite symmetrical.
¢ ltis somewhat wider and flatter.
d All of the above.
26. The 95% confidence interval arrived at from a
particular experiment is 72-79. Therefore:
a the probability is 0.05 that p falls between
72-79
b the probability is 0.95 that the interval 72-79
contains X
¢ the probability is 0.95 that the interval 72-79
contains p
d aandc.
27. Compared with a 99% confidence interval, a
95% confidence interval is:
a larger
b smaller
¢ more likely to contain the population mean
d less likely to contain the sample mean.
The following information should be used in answer-
ing questions 28-31: a random sample of 25 clients
is selected, and their systolic blood pressures meas-
ured; the mean BP is 115mmHg, with a standard
deviation of 10.
28. This is an example of:
a an experiment
b a natural comparison study
c asurvey
d field research.
29. What is the standard error of the mean for a
sample of this size?
a 10
b 20
c 2
d 25

Self-assessment

30. In order to calculate the 99% confidence interval
of the mean, what t score will be used?
a 2.492
b 2.787
c 2797
d 1.711

31. What is the 99% confidence interval of the mean
in this example?
a 110.0 =1 <120.0
b 109.4 < . < 120.6
¢ 1M116sp<1184
d 1130, <1170

32. A random sample of 25 university students is
found to have a mean IQ of 110, with a stand-
ard deviation of 10. Between what two possible
scores can we be 99% confident that the true
mean |Q for the students at the university lies?
a 95.5-1125
b 85-135
¢ 102.4-117.6
d 104.1-1159

In order to establish the mean weight of newborn
babies at a large maternity hospital, a random
sample of 64 babies is weighed. Their mean weight
is 25009, with a standard deviation of 80g.

Questions 33-35 refer to this information.
33. What is the standard error of the mean?

a 80
b 10
c 1.25
d 0.1

34. In calculating the 95% confidence interval of the
mean, what z value is used?
a 1.96
b 2.33
c 2.58
d 1.64
35. What is the 95% confidence interval of the mean
in this example (to the nearest whole number)?
a 2480 < p < 2520
b 2477 < < 2523
C 2474 <. < 2526
d 2484 < < 2516
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Chapter Eighteen

Hypothesis testing
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introduction

In the previous chapter we introduced the use
of inferential statistics for estimating population
parameters from sample statistics. In the case of
some non-experimental research projects, such as
surveys and descriptive statistics, parameter esti-
mation is adequate for analysing the data. After
all, these investigations aim at describing the char-
acteristics of specific populations. However, other
research strategies involve data collection for the
purpose of testing hypotheses. Here the investiga-
tor has to establish if the data support or refute the
hypotheses being investigated. The key issue is that
hypotheses are generalizations addressing differ-
ences in patterns and associations in populations.
Inferential statistics enables us to calculate the
probability (level of significance) for asserting that
what we are seeing in our sample data is generaliz-
able to the population. This probability is related
to the statistical significance of the sample data.

The aim of this chapter is to introduce the logical
steps involved in hypothesis testing in quantitative
research. Given that hypothesis testing is probabi-
listic, special attention must be paid to the pos-
sibility of making erroneous decisions, and to the
implications of making such errors.

The specific aims of the chapter are to:

1. Examine the logic of hypothesis testing for retain-
ing or rejecting null hypotheses.
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Hypothesis testing

2. Qutline how decisions are made with directional
and non-directional alternative hypotheses.

. Define the concept of statistical significance.

4. Introduce the use of the single sample z and t test
for analysing the statistical significance of the data.

5. Qutline the probability and implications of making

Type | and Type Il decision errors.

w

A simple illustration of
hypothesis testing

One of the simplest forms of gambling is betting
on the fall of a coin. Let us play a little game. We,
the authors, will toss a coin. If it comes out heads
(H) you will give us £1; if tails (T) we will give
you £1. To make things interesting, let us have 10
tosses. The results are:

Toss 1 2 3 4
Outcome H H H H

5 6 7 8 9 10
HH HHHH
Oh dear, you seem to have lost. Never mind, we
were just lucky, so send along your cheque for £10.
What is that, you are a little hesitant? Are you say-
ing that we ‘fixed’ the game? There is a systematic
procedure for demonstrating the probable truth of
your allegations:

1. We can state two competing hypotheses con-
cerning the outcome of the game:

(@) The authors fixed the game; that is, the out-
come does not reflect the fair throwing of a
coin. Let us call this statement the ‘alternative
hypothesis’, H,. In effect, the H, claims that
the sample of 10 heads came from a popula-
tion other than P (probability of heads) = Q
(probability of tails) = 0.5.

(b) The authors did not fix the game; that is, the
outcome is due to the tossing of a fair coin.
Let us call this statement the ‘null hypoth-
esis’, or H,. H, suggests that the sample of 10
heads was a random sample from a popula-
tion where P = Q = 0.5.

2. It can be shown that the probability of tossing 10
consecutive heads with a fair coin is p = 0.001,
as discussed previously (see Ch. 17). That is, the
probability of obtaining such a sample from a
population where P = Q = 0.5 is extremely low.

3. Now we can decide between H and H,. It was
shown that the probability of H being true was
p = 0.001 (1 in a 1000). Therefore, in the balance
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Table 18.1 Probability of obtaining all heads in coin tosses

| n(number of tosses) __p (all heads)
1 0.5000
2 0.2500
3 0.1250
4 0.0625
5 0.0313

of probabilities, we can reject it as being true and
accept H,, which is the logical alternative. In other
words, it is likely that the game was fixed and no
£10 cheque needs to be posted.

The probability of calculating the truth of H,
depended on the number of tosses (n = the sam-
ple size). For instance, the probabilities of obtain-
ing all heads with up to five tosses, according to
the binomial theorem (Ch. 17), are shown in Table
18.1. The table shows that, as the sample size
(n) becomes larger, the probability at which it is
possible to reject H, becomes smaller. With only
a few tosses we really cannot be sure if the game
is fixed or not: without sufficient information it
becomes hard to reject H, at a reasonable level of
probability.

A question emerges: ‘What is a reasonable level
of probability for rejecting H?" As we shall see,
there are conventions for specifying these prob-
abilities. One way to proceed, however, is to set
the appropriate probability for rejecting H, on the
basis of the implications of erroneous decisions.

Obviously, any decision made on a probabilistic
basis might be erroneous. Tivo types of elementary
decision errors are identified in statistics as Type I
and Type II errors. A Type I error involves mis-
takenly rejecting H , while a Type II error involves
mistakenly retaining H,.

In the above example, a Type I error would
involve deciding that the outcome was not due to
chance when in fact it was. The practical outcome
of this would be to accuse the authors falsely of
fixing the game. A Type II error would represent
the decision that the outcome was due to chance,
when in fact it was due to a ‘fix’. The practical



Steps in hypothesis testing

outcome of this would be to send your hard-earned
£10 to a couple of crooks. Clearly, in a situation
like this, a Type II error would be more odious
than a Type I error, and you would set a fairly high
probability for rejecting H;. However, if you were
gambling with a villain, who had a loaded revolver
handy, you would tend to set a very low probabil-
ity for rejecting H,. We will examine these ideas
more formally in subsequent parts of this chapter.

The logic of hypothesis testing

Hypothesis testing is the process of deciding stat-
istically whether the findings of an investigation
reflect chance or real effects at a given level of
probability. If the results do not represent chance
effects then we say that the results are statistically
significant. That is, when we say that our results
are statistically significant we mean that the pat-
terns or differences seen in the sample data are
generalizable to the population.

The mathematical procedures for hypothesis
testing are based on the application of probabil-
ity theory and sampling, as discussed previously.
Because of the probabilistic nature of the proc-
ess, decision errors in hypothesis testing cannot be
entirely eliminated. However, the procedures out-
lined in this section enable us to specify the prob-
ability level at which we can claim that the data
obtained in an investigation support experimental
hypotheses. This procedure is fundamental for
determining the statistical significance of the data
as well as being relevant to the logic of clinical
decision making.

Steps in hypothesis testing

The following steps are conventionally followed in
hypothesis testing:

1. State the alternative hypothesis (H,), which is the
prediction intended for evaluation. The H, claims
that the resuits are ‘real’ or ‘significant’, i.e. that
the independent variable influenced the depend-
ent variable, or that there is a real difference
among groups. The important point here is that H,
is a statement concerning the population. A real

or significant effect means that the results in the
sample data can be generalized to the population.

2. State the null hypothesis (H,), which is the logical
opposite of the H,. The H, claims that any differ-
ences in the data were just due to chance: that
the independent variable had no effect on the
dependent variable, or that any difference among
groups is due to random effects. In other words, if
the H, is retained, differences or patterns seen in
the sample data should not be generalized to the
population.

3. Set the decision level, o (alpha). There are two
mutually exclusive hypotheses (H, and Hy) com-
peting to explain the results of an investigation.
Hypothesis testing, or statistical decision making,
involves establishing the probability of H, being
true. If this probability is very small, we are in a
position to reject the H,. You might ask ‘how small
should be the probability (o) for rejecting H,?’ By
convention, we use the probability of o = 0.05. If
the H, being true is less than 0.05 we can reject
H,. We can choose an o of < 0.05, but not more,
That is, by convention among researchers, results
are not characterized as significant if p > 0.05.

4. Calculate the probability of H, being true. That is,

we assume that H, is true and calculate the prob-
ability of the outcome of the investigation being
due to chance alone, i.e. due to random effects.
We must use an appropriate sampling distribution
for this calculation.

5. Make a decision concerning H,. The following
decision rule is used. If the probability of H, being
true is less than o, then we reject H at the level of
significance set by a. However, if the probability
of H, is greater than o, then we must retain H,. In
other words, if:

P (H, is true) < o; reject H
p (H, is true) > o; retain H,

It follows that if we reject H, we are in a position
to accept H,, its logical alternative. If we reject H,,
we decide that H, is probably true.

Let us look at an example. A rehabilitation
therapist devises an exercise programme which
is expected to reduce the time taken for people
to leave hospital following orthopaedic surgery.
Previous records show that the recovery time for
patients has been p = 30 days, with ¢ = 8 days.
A sample of 64 patients are treated with the exer-
cise programme, and their mean recovery time is
found to be X = 24 days. Do these results show
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Hypothesis testing

that patients who had the treatment recovered
significantly faster than previous patients? We can
apply the steps for hypothesis testing to make our
decision.

1. State H,: ‘The exercise programme reduces the
time taken for patients to recover from orthopae-
dic surgery’. That is, the researcher claims that
the independent variable (the treatment) has a
‘real’ or ‘generalizable’ effect on the dependent
variable (time to recover).

2. State H: ‘The exercise programme does not
reduce the time taken for patients to recover
from orthopaedic surgery’. That is, the statement
claims that the independent variable has no effect
on the dependent variable. The statement implies
that the treated sample with X = 24, and n = 64
is in fact a random sample from the population p
= 30, o = 8. Any difference between X and p can
be attributed to sampling error.

3. The decision level, o, is set before the results
are analysed. The probability of o depends on
how certain the investigator wants to be that the
results show real differences. If he set « = 0.01,
then the probability of falsely rejecting a true H,
is less than or equal to 0.01 (1/100). If he set o =
0.05, then the probability of falsely rejecting a
true H, is less than or equal to 0.05 or (1/20).

That is, the smaller the o, the more confident

the researcher is that the results support the
alternative hypothesis. We also call « the level of
significance. The smaller the «, the more signifi-
cant the findings for a study, if we can reject H,. In
this case, say that the researcher sets a = 0.01.
(Note: by convention, o should not be greater
than 0.05.)

4. Calculate the probability of H, being true. As
stated above, H, implies that the sample with
X = 24 is a random sample from the population
with p = 30, ¢ = 8. How probable is it that this
statement is true? To calculate this probability, we
must generate an appropriate sampling distribu-
tion. As we have seen in Chapter 17, the sampling
distribution of the mean will enable us to calculate
the probability of obtaining a sample mean of
X = 24 or more extreme from a population with
known parameters. As shown in Figure 18.1, we
can calculate the probability of drawing a sample
mean of X = 24 or less. Using the table of normal
curves (Appendix A), as outlined previously, we
find that the probability of randomly selecting
a sample mean of X = 24 (or less) is extremely
small. In terms of our table, which only shows the
exact probability of up to z = 4.00, we can see

210

Frequency
1

z value

Figure 18.1 ® Sampling distribution of means. Sample
size = 64; population mean = 30; standard deviation = 8.

that the present probability is less than 0.00003.
Therefore, the probability that H, is true is less
than 0.00003.

5. Make a decision. We have set o = 0.01. The
calculated probability was less than 0.0001.
Clearly, the calculated probability is far less than
a. Therefore, the investigator can reject the state-
ment that H, is true and accept H,, that patients
treated with the exercise programme recover
earlier than the population of untreated patients.

Directional and non-directional
hypotheses and corresponding
critical values of statistics

In the previous example, H, was directional in that
we asserted that the difference between the mean
of the treated sample and the population mean
was expected to be in a particular direction. If
we state that there was some effect due to the
dependent variable, but do not specify which way,
then H, is called non-directional. In the previ-
ous example, if the investigator stated H, as ‘The
exercise programme changes the time taken to
recover following surgery’ then H, would have
been non-directional.

In general, an alternative hypothesis is directional
if it predicts a specific outcome concerning the
direction of the findings by stating that one group
mean will be higher or lower than the other(s).
An alternative hypothesis is non-directional if it
predicts a difference, without specifying which



Directional and non-directional hypotheses and
corresponding critical values of statistics

Frequency
1

Frequency
L]

4 3 -2 -1 0 1 2 3 4
8 Zo=2.33 zvalue

Figure 18.2 » Two examples of statistical decision making
with directional (one-tail) hypothesis, H,.

group mean is expected to be higher or lower than
the others.

If we propose a directional H,,, it is understood
that we have reasonable information on the basis
of pilot studies or previously published research
for predicting the direction of the outcome. The
advantage of a directional H, is that it increases
the probability of rejecting H,. However, the deci-
sion of the directionality of H, must be decided
before the data are collected and analysed.

Let us now examine the concept of the ‘critical’
value of a statistic. The critical value of a statistic
is the value of the statistic which bounds the pro-
portion of the sampling distribution specified by .
The critical value of the statistic is influenced by
whether H, is directional or non-directional.

Figures 18.2 and 18.3 represent the sampling
distributions of the mean where n is large; that is,
the sampling distribution for the statistic X.

g -

s |

g |
J
4

A Zry =196 Zoq = +1.96 zvalue

g L

g |

g |

Al 1 1 1 1
<4 -3 \ 2
8 Zert = -2.58 Zeit = +2.58 Zvalue

Figure 18.3 * Two examples of statistical decision making
with non-directional (two-tail) hypothesis, H,.

As we have seen in Chapter 17, these are the
sampling distributions for X we would expect by
the random selection of samples, as specified by
H,. Therefore, we can estimate from the distribu-
tions the probability of selecting any sample mean,
X, by chance alone. The « value (the level of signifi-
cance) specifies the criterion for rejecting H,. We
can see that the critical value for the statistic (in
this case z_,) cuts off an area of the distribution
corresponding to a (p = 0.05 or p = 0.01).

In Figure 18.2, we can see that z_ = 1.65 (for
o =0.05) and z_, = 2.33 (for o = 0.01). (These
values are obtained from Appendix A.) Therefore,
for any sample mean, X, where the transformed
(z) value is greater than or equal to z_, we will
reject H; (that the sample mean was a random
sample). However, if the absolute value of the
transformed statistic is less than z_, then we

crit/
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must retain H,. Note that when o = 0.01, the z_
is greater than when o = 0.05. Clearly, the higher
the level of significance set for rejecting H, the
greater the absolute critical value of the statistic.
Figure 18.2 shows statistical decision making with
a directional H,, where the probabilities associ-
ated with only one of the tails of the distribution
are used.

Figure 18.3 shows the critical values for z with a
non-directional H,. Here, the probabilities associ-
ated with a (0.05 or 0.01) are divided between the
two tails of the distribution. That is, where o =
0.05, half (0.025) goes into each tail, and where a
= 0.01, half (0.005) also goes into each tail. This
changes the values of z_,, which becomes +1.96 or
+2.58, respectively, as shown in Figure 18.3. Here,
we reject H if the calculated transformed z value
of X falls beyond the values of z_,. When we com-
pare the values of z_ for the one-tail and two-tail
decisions, we find that the critical values are greater
for the two-tail decisions. This implies that it is
more difficult to reject H, if we are making two-

0
tail decisions on the basis of a non-directional HA.

Decision rules

In general, Figures 18.2 and 18.3 illustrate the deci-
sion rules for statistical decision making for hypoth-
eses concerning sample means. These rules are:

Iz, = 12z, |5 reject Hy

Iz, <lz_,|; retain H,

The same decision rules hold for the t distribu-
tions associated with the sampling distribution of
the mean when n (the sample size) is small (see

Ch.17).

I tobt

| tobt'

| = [t_,|; reject H,
<[t

el Tetain Hy

z, and ¢t refer to the calculated value of the stat-
istic, based on the data:

_X-n
zobt T T s

_X-n
tobt - S_
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z_ and t_ are the critical values of the statistic
obtained from the tables in Appendices A and B.
As we have seen, the values of these depend on
a and the directionality of H,. | | is the symbol
for modulus, implying that we should look at the
absolute value of a statistic. Of course, the sign
is important when considering if X is greater or
smaller than p. However we can ignore the sign (+
or —) when making statistical decisions. In effect,
the greater z,_ or ¢, , the more deviant or improb-
able the particular sample mean, X, is under the
sampling distribution specified by H,.

Statistical decisions with single
sample means

The following examples illustrate the use of stat-
istical decision making concerning a single sam-
ple mean, X. Such decisions are relevant when
our data consist of a single sample and we are to
decide if the X of the sample is significantly dif-
ferent to a given population, with a mean of .

A statistical test is a procedure appropriate for
making decisions concerning the significance of
the data. The z test and the ¢ test are procedures
appropriate for making decisions concerning the
probability that sample means refiect popula-
tion differences. (As shown in Ch. 19, there is a
variety of statistical tests available for hypothesis
testing.)

Example 1

A researcher hypothesizes that males now weigh
more than in previous years. To investigate this
hypothesis he randomly selects 100 adult males
and records their weights. The measurements for
the sample have a mean of X = 70kg. In a census
taken several years ago, the mean weight of males
was |1 = 68kg, with a standard deviation of 8kg.

1. Directional H,: males are heavier. That is, X = 70
is not a random sample from population p. = 68.
2. H,: males are not heavier. Thatis, X = 70 is a
random sample from population p. = 68.
. Decision level: o = 0.01.
4. Calculate probability of H, being true. Here, o =
0.01, one-tail. We can find from the tables
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zvalue

Retain Ho Reject Hp

Figure 18.4 ¢ Hypothesis testing: directional.

(Appendix A) z_., the z score which cuts off an
area of 0.01 of the total curve. z_, = +2.33 (o =
0.01; one tail).

Calculating the z score (z,,) representing the
probability of the sample being drawn from
the population under H, (1 = 68), we use the
formula:

Zobt T Xs; =
where s; = siin
Zyy = 70 — 68
8/+[100
=25
Here,z , = 2.33

5. The decision rule is that if:

o] = 12 s reject Hy
Zot| < 12 ]; retain Hy

2.5 > 2.33, so the z_,, falls into the area of rejec-
tion, as shown in Figure 18.4. Therefore, the
researcher can reject H, and accept H, ata
0.01 level of significance. That is, the results of
the investigation indicate that the mean weight
of males has increased (consistent with the pre-

dictions of the research hypothesis). We conclude

that the results are statistically significant at
p =0.01.

Frequency
L

Zopt = 425

Zey = +2.58

0.005

-4 3 -2 - 0 1 2 3 4
2z value
Reject Hp

Reject Ho Retain Hp

Figure 18.5 ¢ Hypothesis testing: non-directional.

Example 2

A researcher hypothesized that men today have
different weights (either more or less) than in
previous years (assume the same information as
for Example 1).

1.

Non-directional H,: males are of different weight,
that is X = 70 is not a random sample from popu-
lation p. = 68.

. H,: males are not different, that is X is a random

sample from population p = 68.

. Decision level: a = 0.01.
. Calculate the probability of H, being true. Here,

a = 0.01 (two-tail); the value of z_, = 2.58 (from
Appendix A); the value of z |, = 2.5 (as calculated
in Example 1).

. Decision: applying the decision rule as outlined in

Example 1:

[Zot] < l2ols @5 2.5 < 2.58

z,,, falls into the area of acceptance, as shown
in Figure 18.5. Therefore, the researcher must
retain the H,, and conclude that the study did not
support H, at a 0.01 level of significance. The
investigation has not provided evidence that the
mean weight of males has increased. The results
are reported as not being statistically significant.

Example 3

The previous two examples involved sample sizes
of n > 30. However, as we saw in Chapter 17, if
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n < 30, the distribution of sample means is not a
normal, but a t distribution. This point must be
taken into account when we calculate the prob-
ability of H being true. That is, for small samples,
we use the ¢ test to evaluate the significance of
our data.

Assume exactly the same information as in
Example 1, except that sample size isn = 16.

1. Directional H,: as in Example 1.

2. H,: as in Example 1.

3. a = 0.01, one tail.

4. We can find from the t table (Appendix B) the
value for t_.. To look up t_, we must have the
following information:

(@) o, the level of significance (0.05 or 0.01)

(b) direction of H, (directional or non-
directional)

(c) the degrees of freedom (df).

In this instance:

(@) o= 0.01

(b} H, is directional, therefore we must look up a
one-tail probability

(c)df=n-1=16-1=15

Looking up the appropriate value fort; t_, =

2.602. Calculating the t score (t_, ) representing

the probability of the sample being drawn

from the population under H,, we use the

formula:

_X-w
Sz
_70-68

YT

=1.0

tobt

5. As we stated earlier, the decision rule is identical
to that of the z test:

Zopel = 124 reject H,
ol < [2els retain Hy

Here, 1.0 < 2.602, such that t_ falls into the area
of retention (Fig. 18.6). Therefore, we must retain
H, at a 0.01 level of significance. Clearly, whenn =
16, the investigation did not show a significant
weight increase for the males.
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lobt = 10

Frequency
i

Retain Hy

Figure 18.6 ¢ Hypothesis testing: directional.

Conclusion

The above examples demonstrate the following
points about statistical decision making:

° We are more likely to reject H, if we use a one-tail
test (directional H,) than a two-tail test (non-direc-
tional H,). In effect, we are using the prediction of
which way the differences will go to increase the
probability of rejecting H, and therefore accepting
H,. Examples 1 and 2 demonstrate this point; in
Example 1 we rejected H, with a directional H,,
while we retained H, in Example 2, with exactly
the same data.

° The larger the sample size, n, the more likely we
are to reject H, for a given set of data. Comparing
Examples 1 and 3 demonstrates this; although p,
o, and X were the same, where n was small we
had to retain H,. Also, when n is small, (7 < 30),
we must use the t test to analyse the significance
of our sample mean being different.

¢ The more demanding the decision leve! (that is, if
a is small), the less likely we are to reject H,. To
illustrate this point, repeat Example 2, but set o =
0.05. Here, z_ = 1.96 so that z_, is greater than
z . Therefore, we can reject H,, and accept H, at
a 0.05 level of significance. That is, with exactly
the same data, we have rejected or accepted Hy,
depending on the level of significance, a.

Errors in inference

When we say our results are statistically significant,
we are making the inference that the results for



_ Table 18.2 Decision outcomes

I .E . (‘

H, correct (no ‘False alarm’ Correct decision
difference or effect) ~ Type | error

H, incorrect (real Correct decision  ‘Miss’ Type Il
difference or effect) error

our sample are true for the population. It should
be evident from the previous discussion that stat-
istical decision making can result in incorrect
decisions. There are two main types of inferential
error: Type I and Type II.

A Type I error occurs when we mistakenly
reject H; that is, when we claim that our experi-
mental hypothesis was supported when it is, in
fact, false. The probability of a Type I error occur-
ring is less than or equal to a. For instance, in the
previous Example 1 we set a = 0.01. The prob-
ability of making a Type I error is less than or equal
to 0.01; the chances are equal to or less than 1/100
that our decision in rejecting H, was mistaken.
Therefore, the smaller «, the less the chance
of making a Type I error. We can set « as low as
possible, but by convention it must be less than or
equal to 0.05.

A Type Il error occurs when we mistakenly
retain H; that is, when we falsely conclude that
the experimental hypothesis was not supported
by our data. The probability of a Type II error
occurring is denoted by 3 (beta). In Example 3 we
retained H, perhaps falsely. If n was larger, we
might well have rejected H,, as in Example 1. Type
I errors represent a 'false alarm’ and Type II errors
represent a ‘miss’. Table 18.2 illustrates this.

Table 18.2 illustrates that, if we reject H, we
are making either a correct decision or a Type I
error. If we retain H, we are making either a cor-
rect decision or a Type Il error. While we cannot,
in principle, eliminate these from scientific deci-
sion making, we can take steps to minimize their
occurrence.

We minimize the occurrence of Type I error
by setting an acceptable level for «. In scientific
research, editors of most scientific journals require

Summary

L Null Alternative
hypothesis hypothesis
(Ho) (Ha)

Frequency
T

Figure 18.7 = Change of decision level to increase 3 and
decrease «. As the decision criterion is moved from A to

B to C, the relative frequency of Type | and Type Il errors

alters.

that acshould be set at 0.05 or less. This convention
helps to reduce false alarms to a rate of less than
1/20. Replication of the findings by other inde-
pendent investigators provides important evidence
that the original decision to reject H, was correct.

How do we minimize the probability of Type
I error?

1. Increase the sample size, n.

2. Reduce the variability of measurements (s, either
by increasing accuracy (Ch. 12) or by using sam-
ples that are not highly variable for the measure-
ment producing the data).

3. Use a directional H,, on the basis of previous
evidence about the nature of the effect.

4. Set a less demanding «, Type | error rate. There
is a relationship between « and 8, such that the
smaller o, the greater (3. This relationship is illus-
trated in Figure 18.7. Figure 18.7 shows that, as o
decreases, 3 increases. Inevitably, as we decrease
the Type | error rate, we increase the probability
of Type |l error. This is the reason why we do not
normally set o lower than p = 0.01. Although a
significance level such as a = 0.001 would reduce
‘false alarms’ it would also increase the probabil-
ity of a ‘miss’.

Summary

The problem addressed in the previous two chap-
ters was that, although our hypotheses are general
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statements concerning populations, the evidence
for verifying or supporting our hypotheses is based
on sample data. We solve this problem through
the use of inferential statistics.

It was argued in this chapter that, once the
sample data have been collected and summarized,
the investigator must analyse the findings to dem-
onstrate their statistical significance. Significant
results for an investigation mean that differences or
changes demonstrated were real, rather than just
the outcome of random sampling error.

The general steps in using tests of significance
were explained, and several illustrative examples
using the z and ¢ tests for single sample designs
were presented. A critical value is set for the stat-
istic (in this case z_, t ) as specified by o. If the
magnitude of the obtained value of the statistic
(2,4 t.y,) €Xceeds the critical value, H, is rejected.
In this case, the investigator concludes that the
data supported the differences predicted by the
alternative hypothesis (at the level of significance
specified by o). However, if the obtained value
of the statistic is calculated to be less than the
critical value, then the investigator must conclude
that the data did not support the hypothesis. It
was noted that following these steps does not
guarantee the absolute truth of decisions made
about the rejection or acceptance of the alterna-
tive hypotheses, but rather specifies the probabil-
ity of the decisions being correct.

Two types of erroneous decisions were specified,
Type I and Type Il errors. A Type I error involves
falsely concluding that differences or changes
found in a study were real, that is, concluding
that the data supported a hypothesis which is, in
fact, false. A Type Il error involves falsely conclud-
ing that no differences or changes exist, that is,
concluding that the data did not support a hypoth-
esis which is, in fact, true. It was demonstrated
that the probability of these errors depends on fac-
tors such as the size of n, the directionality of H,
and the variability of the data.

The procedures of hypothesis testing and error
were related to the logic of clinical decision mak-
ing. The probabilities (o« and ) of making Type
I and Type Il errors are interrelated. In this way,
both researchers and clinicians must take into
account the implications of possible error when
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setting levels of significance for interpreting the
data.

Self-assessment

Explain the meaning of the following terms:

alternative hypothesis

critical value of a statistic

decision rule

directional or non-directional alternative hypothesis
null hypothesis

one-tail or two-tail test of significance
region of acceptance

region of rejection

significance (level of)

Type | and Type |l error

ztestorttest

True or false

1. The alternative hypothesis states that there is an
effect or difference in the results.

2. If the probability of H, being true is greater than
8, we can reject H,,.

3. Sampiling distributions are used to enable the
calculation of H, being true.

4. The critical value of a statistic is the value which
cuts off the region for the rejection of H,.

5. If the critical value of a statistic is less than the
obtained or calculated value, we can reject H,.

6. ais a probability, usually set at 0.01 or 0.05.

7. The t test requires that the sampling distribution
of ¢ should be normally distributed.

8. Hypothesis testing involves choosing between
two mutually exclusive hypotheses, H;and H,.

9. If o is set at 0.01 instead of 0.05, then the prob-
ability of making a Type | error decreases.

10. If we retain H;, then we must conclude that the
investigation did not produce significant results.

11. If nis greater than 30, the t test is more appro-
priate than the z test.

12. If results are statistically significant, the inde-
pendent variable must have had a very large
effect.

13. A directional H, should be used when there is
theoretical justification for the existence of a
directional effect in the data.

14. When the results are statistically significant, they
are unlikely to reflect sampling error.



15. Itis impossible to prove the truth of H, when
using sample data as opposed to population
data.

16. If we reject H, then we are in a position to
acceptH,.

17. If o decreases (is made more stringent), then
B increases.

18. If H; is true and we reject it, we have made a
Type | error.

19. If H, is false and we reject it, we have made a
Type |l error.

20. If H, is false, and we falil to reject it, we have
made a Type Il error.

Multiple choice

1. Hypothesis testing involves:

a deciding between two mutually exclusive
hypotheses, H; and H,

b deciding if the investigation was internally and

externally valid
¢ deciding if the differences between groups
was large or small
d none of the above.
2. An a level of 0.01 indicates that:

a the probability of falsely rejecting H is limited

to0 0.05
b the probability of Type Il error is 0.01
¢ the probability of a correct decision is 0.01
d none of the above.
3. If ais changed from 0.01 to 0.001:

a the probability of making a Type Il error
decreases

b the probability of a Type | error increases
¢ the error probabilities stay the same
d the probability of a Type | error decreases.
4. If we reject the null hypothesis, we might be
making:
a aTypell error
b aTypelerror
¢ a correct decision
d aorc
e borc.
5. Statistical tests are used:

a only when the investigation involves a true
experimental design

b to increase the internal validity of experiments
¢ to establish the probability of the outcome of

an investigation being due to chance alone
d aandb.

10.

11.

12.

Self-assessment

. The outcome of a statistical analysis is found to

be p = 0.02. This means that:

a the alternative hypothesis was directional
b we canreject H at o = 0.05

¢ we must conclude that H, must be true
d aandc.

. When the results of an experiment are non-

significant, the proper conclusion is:

a the experiment fails to show a real effect for
the independent variable

b chance alone is at work

¢ toacceptH,

d toacceptH,.

. Itis important to know the possible errors (Type

| or Type Il) we might make when rejecting or

failing to reject H;:

a to minimize these errors when designing the
experiment

b to be aware of the fallacy of accepting H,

¢ to maximize the probability of making a cor-
rect decision by proper design

d all of the above.

An « level of 0.05 indicates that:

a if H, is true, the probability of falsely rejecting
it is limited to 0.05

b 95% of the time chance is operating

¢ the probability of a Type Il error is 0.05

d the probability of a correct decision is 0.05.

A directional alternative hypothesis asserts

that:

a the independent variable has no effect on the
dependent variable

b arandom effect is responsible for the differ-
ences between conditions

¢ the independent variable does not have an
effect

d there are differences in the data in a given
direction.

If o is changed from 0.05 to 0.01:

a the probability of a Type |l error decreases

b the probability of a Type | error increases

¢ the error probabilities stay the same

d the probability of Type Il error increases.

If the null hypothesis is retained, you may be

making:

a a correct decision about the data

b aType l error

¢ aType ll error

d aorc

e aorb.
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14.

15.

16.

17.

Hypothesis testing

. When the results are statistically significant, this
means:
a the obtained probability is equal to or less
than o

b the independent variable has had a large
effect

¢ we can reject H,

d all of the above

e aandc.

B refers to:

a the probability of making a Type | error
b the probability of (1 — «)

¢ the inverse of the probability of sampling error

d the probability of making a Type |l error.
Setting o = 0.0001 would reduce the probability
of Type | error. However, it would:

a increase Type |l error probability

b increase the standard error of variance

¢ reduce external validity

d all of the above.

We retain H, if:

a |t l=|t,l

b |ty >t

clt, I<It,l

d none of the above.

If o is changed from 0.01 to 0.001:

a the probability of a Type |l error decreases
b the probability of a Type | error increases
¢ the error probabilities stay the same

d none of the above.

A researcher believes that the average age of unem-
ployed people has changed. To test this hypothesis,
the ages of 150 randomly selected unemployed

pe
23
be

ople are determined (A). The mean age is
.5 years. A complete census taken a few years
fore showed a mean age of 22.4 years, with a

standard deviation of 7.6 (B).

18

Questions 18-22 refer to these data.
. The alternative hypothesis should be:
a X, =X,
b p, =g
c EA #* p,-a
d X, #X,
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19.

20.

21.

22.

23.

24,

The z_, where o = 0.01 is:

a +2.58

b +1.64

c +2.33

d -1.64

The obtained value of the appropriate statistic

for testing H, is:

a 2.88

b 2.35

c 184

d 1.77

What do you decide, using o = 0.01?

a retain H,

b rejectH,

c itis not possible to decide

d aandb.

Therefore, the researcher should conclude

that:

a unemployed persons are getting older on
average

b there is no evidence supporting the hypoth-
esis that the average age of unemployed
people has changed

¢ too many young people are unemployed

d bandc.

When the resuits are not statistically significant,

this means that:

a the experimental hypothesis was not sup-
ported by the data at a given level of
probability

b the null hypothesis was retained at a given
level of probability

¢ the alternative hypothesis must have been
directional

d the investigation was internally valid

e aandb.

If « = 0.05 and the probability of the statistic

calculated from the data is p = 0.02, then:

we should retain H,

we should reject H,

we should reject H, at o = 0.05

we should restate H, so that the findings will

become significant at the 0.05 level.

QO T b
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Introduction

In the previous chapter, we examined the logic
of hypothesis testing and the use of z and ¢ tests
for testing hypotheses about single sample means.
There are numerous statistical tests available
which are used in a conceptually similar fashion
to analyse the statistical significance of the data.
That is, all statistical tests involve setting up the
relevant hypotheses, H;, and H,, and then, on
the basis of the appropriate inferential statistics,
computing the probability of the sample statistics
obtained occurring by chance alone. We are not
going to attempt to examine all statistical tests
in this introductory book. These are described
in various statistics text books or in data analysis
manuals. Rather, in this chapter we will examine
the criteria used for selecting tests appropriate for
the analysis of the data obtained in specific inves-
tigations. To illustrate the use of statistical tests
we will examine the use of the chi-square test
(x3). This is a statistical test commonly employed
to analyse nominally scaled data. Finally, we will
briefly examine the uses of the Statistical Package
for Social Sciences (SPSS) for data analysis in
general.
The aims of this chapter are to:

1. Discuss the criteria by which a statistical test

is selected for analysing the data for a specific
study.
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2. Demonstrate the use of the x? test for analysing
nominal scale data.

3. Explain how statistical packages are used for
quantitative data analysis.

The relationship between
descriptive and inferential
statistics

As we have seen in the previous chapters, statis-
tics may be classified as descriptive or inferential.
Descriptive statistics are concerned with issues
such as ‘What is the average length of hospital-
ization of a group of patients?’ Inferential statis-
tics are used to address issues such as whether
the differences in average lengths of hospitaliza-
tion of patients in two groups are statistically sig-
nificantly different. Thus, descriptive statistics
describe aspects of the data such as the frequen-
cies of scores, the average or the range of values
for samples, whereas when using inferential stat-
istics, one attempts to infer whether differences
between groups or relationships between variables
represent persistent and reproducible trends in
the populations.

In Section 5 we saw that the selection of
appropriate descriptive statistics depends on the
characteristics of the data being described. For
example, in a variable such as incomes of patients,
the best statistics to represent the typical income
would be the mean and/or the median. If you had
a millionaire in the group of patients, the mean
would give a distorted impression of the central
tendency. In this situation the median would be
most appropriate. The mode is most commonly
used when the data being described are categor-
ical. For example, if in a questionnaire respondents
were asked to indicate their sex and 65 said they
were male and 35 female, then ‘male’ is the modal
response. It is quite unusual to use the mode only
with data that are not nominal. As a rule, the scale
of measurement used to obtain the data and its
distribution determine which descriptive statistics
are selected.

In the same way, the appropriate inferential
statistics are determined by the characteristics
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of the data being analysed. For example, where
the mean is the appropriate descriptive statis-
tic, the inferential statistics will determine if the
differences between the means are statistically
significant. In the case of ordinal data, the appro-
priate inferential statistics will make it possible
to decide if either the medians or the rank orders
are significantly different. With nominal data, the
appropriate inferential statistic will decide if pro-
portions of cases falling into specific categories are
significantly different.

Thus, when the data have been adequately
described, the appropriate inferential statistic will
follow logically. However, when selecting an appro-
priate statistical test, the design of the investigation
must also be taken into account.

Selection of the appropriate
inferential test

Before addressing the issue of the selection of the
appropriate inferential statistical test, it is useful
to reiterate the reason why a statistical test should
be employed.

In many studies, inferential statistical tests are
not required. For example, if a health care needs-
assessment survey is conducted in a particular
community, using a full population, the investiga-
tor might not be overly concerned with general-
izing the results to other communities, or with
demonstrating that certain relationships between
variables are reliable. It may be enough to be able
to say, for example, that ‘35% of the respondents
indicated that they were dissatisfied with the
existing level of medical services’. In this instance,
descriptive statistics are all that the investigator
requires since the complete population was stud-
ied. If, however, the investigator wishes to argue
that certain differences between groups or that
certain correlations between variables for a sample
are generalizable to the population, then inferen-
tial statistical tests are necessary.

The inferential statistic provides the investigator
with a means of determining how reproducible
the obtained results are, by enabling access to a
probability. The probability associated with the
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value of an inferential statistic informs the inves-
tigator of the likelihood that the results obtained
were due to chance factors, or if they are signifi-
cant at a given level of probability.

Please note that we are not going to examine all
of the numerous statistical tests available for deci-
sion making. Rather, the aim of this chapter is to
examine the criteria used for selecting tests appro-
priate for the analysis of data obtained in investi-
gations. To illustrate the use of statistical tests we
will look at the x? test, commonly employed for
analysing nominal data. We examine the interpre-
tation of findings which do not reach statistical
significance and the relationship between statisti-
cal and clinical significance. In Chapter 20 we will
consider some of the personal and social values
implicit in making decisions concerning the actual
adoption and use of treatments and diagnostic tests
in clinical settings.

There is a variety of statistical tests, some of
which are named in Table 19.1. The selection of
the appropriate statistical test is determined by
the following considerations:

1. The scale of measurement used to obtain the data
(nominal, ordinal, interval, or ratio).

2. The number of groups used in an investigation
(one or more).

3. Whether the measurements were obtained from
independent subjects or from related samples,
such as those involving repeated measurements
of the same subjects.

4. The assumptions involved in using a statistical
test, such as the distribution of the scores or the
minimum required sample size.

_Table 19.1 Selection of tests of significance

[Wo jroups

Table 19.1 offers a sample of statistical tests in
order to illustrate how statistical tests are selected
for analysing data. Several points are worth noting.

1. It can be seen that appropriate tests are selected
on the basis of the four criteria outlined above.
When we have determined these four criteria for a
given investigation, the cell containing the appro-
priate test can be readily selected. We might need
additional criteria for deciding between two tests
within a cell. For instance, we saw in the previous
section that, if n < 30, we use the t test rather
than the z test.

2. The tests appropriate for analysing ordinal and
nominal data are called non-parametric or distri-
bution-free. The tests for analysing interval or ratio
data are called parametric tests. The parametric
tests (for example, z, t or F) require that certain
assumptions (such as normality and equal vari-
ance) be valid for the populations from which the
samples were drawn. The non-parametric tests
(e.g. X2 Mann-Whitney U) require few, if any,
assumptions about the underlying population
distributions.

3. Even before the data are collected, an investigator
should have a good idea of which statistical test
is appropriate for analysing the data. Sometimes,
however, the distribution of the data is such that
the test that was initially selected is found to be
inappropriate.

Let us look at some examples to illustrate how
statistical tests are selected.

An investigator wishes to evaluate the effect-
iveness of a new treatment in contrast to a conven-
tionally used treatment. Assume that the outcome
(dependent variable) is measured on a five-point

Nominal x? test McNemar's test x? test Cochran's Q test
Ordinal Mann-Whitney U test Sign test Kruskal-Wallis H test Friedman two-way
analysis of variance
Interval or ratio t test (independent t test (dependent ANOVA (F) (independent ANOVA (F) (dependent
groups) groups) groups) groups)

\*]
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ordinal scale. Each subject is assigned to one of
the two treatment groups. Which test would the
investigator use to analyse the significance of sam-
ple data when:

1. the measurement was ordinal?
2. there were two groups (new treatment, conven-
tional treatment)?

3. subjects were independently assigned to a spe-
cific group?

By inspection of Table 19.1 the investigator would
select the Mann-Whitney U test to analyse the
significance of the data.

If we change the above example by stating that
the dependent variable was measured on an inter-
val scale, the appropriate test would now be a t test
(for independent groups). Let us say that three
groups were used (by the inclusion of a placebo
group) by the investigator. Now, if the outcome
measurement remained ordinal, the appropriate
test for analysing the data is the Kruskal-Wallis
H test. If, however, the outcome measures were
interval, it follows from Table 19.1 that the appro-
priate test for analysing the results would be
ANOVA (analysis of variance).

Finally, say that in the original example each of
the subjects was treated with both the new and
old treatments. Now, the data would have been
obtained from the repeated measurement of the
same subjects, and the appropriate statistical
test would be the Sign test (ordinal, two groups,
dependent).

Table 19.1 does not include all the avail-
able statistical tests and their uses. In fact, math-
ematical statisticians can generate inferential tests
appropriate for a whole variety of designs. The
basic idea is to use probability theory to gener-
ate appropriate sampling distributions in terms of
which the probability of H, being true can be cal-
culated, and the statistical significance of the find-
ings evaluated.

Rather than examining all the tests and their
underlying assumptions, we will look at the use of
the ¥’ test in some detail. As well as being a very
useful test for analysing nominal data, it (along
with the z and 1) illustrates how statistical tests
are carried out to test hypotheses.
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The 2 test

As shown in Table 19.1, x? (chi-square) is appro-
priate for statistical analysis when:

1. variables were measured on a nominal scale
2. measurements were of independent subjects.

The 7 test is appropriate for deciding if pro-
portions of cases falling into categories are differ-
ent at a given level of significance.

The statistic, %2, is given by the formula:

Z = U;)_L]Z
X Z—“—fp

where f = observed frequency for a given cat-
egory and f, = expected frequency for a given cat-
egory, assuming H, was true.

The sampling distribution for y? is a family of
curves, which, like ¢, vary with degrees of free-
dom. The use of this inferential statistic is best
illustrated by an example.

Suppose that an investigator is interested in
finding out whether there is a difference in the
relative frequency of different kinds of treatments
currently offered to extremely depressed patients.
A random sample of 150 patients is selected from
a population of patients in Australia, and the type
of treatment offered to them is determined from
their medical records, as shown in Table 19.2.

The entries in each cell represent the frequency
with which patients were given the various treat-
ments. Thus, 45 patients were offered psycho-
therapy, 40 drugs and 65 electroconvulsive therapy.
The x? is the appropriate test for analysing these
data. Let us follow the steps involved in hypothesis
testing, as outlined in Chapter 18.

1. H,: there is a difference in the population
proportions for the three treatments. H, is non-
directional when we use 2.

_Table 19.2 Treatments offered




x? and contingency tables

2. H,: there is no difference in the population propor-
tions of the three treatments. The frequencies
shown in each cell in the table occurred through
random sampling from a population where there is
an equal frequency of the three treatments.

3. Decision level, a: say the investigator sets a sig-
nificance level of 0.05 for rejecting H, (o = 0.05).

4. Calculation of the statistic: x?,, is the value of

x? calculated from the data obtained. To calcu-

late xZ,,, we must determine f, for each cell (£,

is, of course, determined by the data). If the null

hypothesis is true, then our expectation is that the

frequencies in each cell should be the same. In
this case, n = 150, so that f, should be 150/3 =

50, given that there are three cells. Let us show

this in tabular form (Table 19.3).

We can now calculate x?, , by calculating (f, - f)%/f.
for each cell, and then summing the values.

2 (f; - f;)z
Xobt — Z_f—
_ (45 - 50)? , (40 =50P (6550

50 50 50
+2.0-+4.5

= 0.5
7.0

The greater the discrepancy between f and f, the
greater the calculated value of the chi-square stat-
istic (x2,)- The direction of the difference is of
no account as the difference between f, and f is
squared.

5. Making decisions concerning H: the decision
rule for 2 is similar to that of the z and t tests, as
shown in the previous chapter:

Xope = X reiect Hy
’;-)!bl = X?nl; retain H(l

Here, x?, is the critical value of the statistic
X%, which cuts off a proportion of the sampling

45 40 65

(50) (50)

distribution equal to a. The value of %o, ik

obtained from the tables in Appendix C. To look
up this statistic, we need to know:

(a) «, which was set at 0.05 for this example
(b) the degrees of freedom, df.

Note that with x* the degrees of freedom with one
variable is k — 1, where k stands for the number of
categories or groups. In this instance, we have k =
3 (three treatments) so that df = 3 — 1 = 2. Now
we can look up the tables in Appendix C. In this
case, a = 0.05 and df = 2, therefore x?, = 5.99.

Here, since %2, > X7, we can reject H, at a
0.05 level of significance. The investigator is in a
position to accept H, (that the three treatments
are offered at different frequencies to depressed
patients). Clearly, electroconvulsive therapy is
given most frequently for the condition (in this
hypothetical example).

x? and contingency tables

In the previous example of x? we had clear expect-
ations of the expected frequencies (f) and were
dealing with only one variable. The ¥? test is also
relevant for analysing nominal data where f, is not
known, and where we are interested in the effects
of more than one variable. Thus, %2 is a statistical
test appropriate for deciding whether two vari-
ables are significantly related.

For example, an investigator compares the
effectiveness of drug therapy with coronary artery
surgery in males 55-60 years old, suffering from
coronary heart disease. A sample of 40 patients
consenting to the investigation is selected from
this population, and randomly divided into the two
treatment groups (drugs only or coronary artery
surgery). The treatment outcome is measured in
terms of survival over 5 years. The outcome of this
hypothetical study is shown in Table 19.4.

Table 19.4 is called a contingency table. A con-
tingency table is a two-way table showing the rela-
tionship between two or more variables. Note that
the levels of the variables have been classified into
mutually exclusive categories (‘drugs or surgery’
for the independent variable, and ‘dead or alive’ for
the dependent variable, in this instance). The cells
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Table 19.4 Contingency table showing obtained frequencies
fora hypothetical study‘pomparing survival after treatments

|
| -
Drugs Surgery AowW marginar

Dead 1" 8 19
Alive 9 12 21
Column 20 20 n =40
marginal

in the contingency table show the frequency of
cases falling into each joint category (for example,
11 people who had ‘drugs only’ died during the 5
years). The row and column marginal scores are
the sums of the frequencies. The row and column
marginals necessarily add up to n, the sample size
(n = 40 for this example).

Table 19.4 is called a two-by-two (2 X 2) con-
tingency table. Depending on the number of cat-
egories (or levels) in each of the two variables, we
might have 3 X 2 tables, 3 X 3 tables, etc. Let us
now turn to analysing the data.

1. H,: there is a difference in the proportion of
patients surviving for 5 years following the two
types of treatment.

2. H: there is no difference in the frequency of
survival rates; any difference between observed
and expected frequencies in the sample is due to
chance.

3. Decision level: & = 0.05.

4. Calculation of the statistic x2,,

(f, — 1, )2
X5 = 2 7
e

To make our explanation of the calculation easier,
let us label the cells and the marginal values, as
shown in Table 19.5. We calculate x2,, by calculat-
ing f, for each of the cells and then substituting
this value into the equation for x2,,. In order to
calculate the expected frequencies, £, for each of
the cells, we use the formula:

Row total % column total
n
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lable 19.5 General format for 2 < 2 contin-

gency table

A B I
C D k
/ m n

Table 19.6 Sample calculation of chi-squared
|
i / { it § (f — )4,
L L s J & 0 2

0.236

A 11 95 2.25
B 8 95 2.25 0.236
C 9 105 2.25 0.214
D 12 105 2.25 0.214
n 40 x2 = 0.90

Substituting into the above formula for each of the
cells:

e _ Ixl s _ ¥ m
Af, = = B:f, = —m
C:fe:kxll D:kxm
n n

Now f_ are the observed frequencies as in the
data, summarized in contingency Table 19.5.
Substituting the values for f, and f, for each cell is
shown in Table 19.6.

(&)

. Making decisions concerning H,: the degrees of
freedom for a contingency table are calculated by
the following formula:

df=(-1)(-1)

where r = the number of rows and ¢ = the
number of columns. In this instance, givena 2 x 2
contingency table:

df=@-1)@2-1)=1

Now we can look up xZ_, for a = 0.05 and df =
1. From Appendix G, %, = 3.84. Therefore, since
e < ¥, we must retain H,: there is no statisti-
cally significant difference in the frequencies of
survival over 5 years following the two kinds of

treatments. Our data show that either there is no



difference in the outcomes of the two treatments
or we made a Type Il error.

The x? test can be used to analyse the statisti-
cal significance of nominal data arising from exper-
imental or non-experimental investigations. This
non-parametric test can be used provided that two
simple assumptions are met:

1. Each subject has provided only one entry
into the x2 table; that is, each of the entries is
independent.

2. The expected frequency (f) in each cell is at least
five. Therefore, if the sample size is too small, x?
may not be used.

If either of these assumptions is violated, the use
of 2 is inappropriate for statistical decision mak-
ing. Assumption 2 is particularly important when
the degrees of freedom is one (df = 1) for a con-
tingency table.

Statistical packages

We have been looking at a few simple examples
of establishing the statistical significance of the
results. These calculations were presented only for
teaching purposes. Some older applied statistics
text books are crammed with complicated formu-
lae for calculating dozens of different inferential
statistics. Researchers now use statistical packages
which have made statistical analysis simpler and
more accessible to all researchers. The following
steps are followed when using statistical packages:

Select a statistical package

There are many packages on the market, including
Statistical Package for Social Sciences ('SPSS’),
‘STATISTICA, ‘Statsview’ or various spreadsheets
with useful statistical functions. Each program has
its strengths and weaknesses and some researchers
have formed strong attachment to specific pro-
grams. If you are a beginner, you should be guided
by your thesis supervisor or your workplace men-
tor about the availability of packages.

Training

It is useful to learn how to use a package before
you begin data analysis. Depending on your apti-
tude and experience, training sessions take 1 or 2

Statistical packages

days. With more complex scientific packages such
as ‘STATISTICA it might require long-term usage
before one feels like an expert user.

Encode the raw data

Using all packages we begin by encoding the data.
You have to be clear about issues such as which
are your independent or dependent variables or
the scaling of the data (continuous/discontinuous).
That is, designs and measurement procedures used
in your research project influence the encoding
process (e.g. Schwartz & Polgar 2003, Ch. 1).

Identifying the statistical analysis required

Some degree of statistical knowledge is required
beyond that covered in this book to enable you
confidently to select and interpret the appropriate
statistical analyses. Keep in mind that our book is
introductory; it is expected that you will complete
a more advanced statistics subject. For more com-
plex analyses it might be useful to seek expert help.

Printout

You will select the appropriate statistical analysis
from the ‘menu’ and print out the results of the
analysis.

interpretation

Finally you will need to interpret the ‘printout’
in relation to your research questions and/or
hypotheses.

Let us look at a simple example. Say we are
interested in the benefits of exercise for improv-
ing mobility in nursing home residents. A sample
of 24 (n = 24) residents with reduced mobility are
selected and give informed consent to participate.
The participants are randomly assigned to either
of two groups: ‘E’, which involves them undertak-
ing an exercise programme suitable for improv-
ing mobility in elderly patients, and ‘C’, which
involves undertaking alternative activities of equal
duration. The outcome or dependent variable is
measured as the distance in metres safely walked
by the residents unassisted at the completion of
the exercise and control programmes. The research
hypothesis here is: exercise improves mobility in
nursing home residents. We will look at a set of
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created data to illustrate hypothesis testing using a Table 19.7 shows key descriptive statistics:

statistical package (SPSS).
Let us follow the steps for analysing the data:

1. Assume that the SPSS package is readily avail-
able in your workplace and you are informed by
your computing expert or supervisor.

2. You have had some training. Even if no formal
training is available, self-help books such as
SPSS: Analysis Without Anguish. Version 11.0 for
Windows (Coates & Steed 2003) are very useful.

3. After accessing the spreadsheet for the
program, we encode the data in the two columns
representing ‘E’ and ‘C’. We inform the program
that the data are ‘continuous’ (ratio-scale data).

4. We refer to Table 19.1 to identify the required
statistical analysis. Here we have:

“ two groups

¢ independent groups

¢ ratio-scale data.

Therefore, we select the independent t test for
analysing the data from the ‘menu’ of inferential
tests available.

5. Printouts: Tables 19.7 and 19.8 for SPSS are
based on printouts presented in Coates & Steed
(2003, p.73). We changed the original example
which contains additional information: the inter-
ested reader might wish to examine it further in
Coakes & Steed (2003).

Table 19.7 Printout for descriptive statistics

Treatment n  Mean Standard Standard
deviation error mean

Control (C) 11 8.00 2.864 0.863
Exercise (E) 11  9.00 3.821 1.152

Table 19.8 ttest for equality of means
Treatment df Sig. (2-tailed)

Control (C) —0695 20 0.495

Exercise (E) —0.695 18539  0.496
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« nrefers to the sample size for each group

¢ mean ()-() for each group

« standard deviation (s) for each group

« standard error mean (s,) for each group. You will
recall from Chapter 17 that s, = s/v/n . Here, for
the control group ‘C’ the standard error mean =

2.864 /J1_1 = 0.863, as shown in the printout.

The group mean for the exercise group does
in fact indicate a better overall performance.
However, we are justified in concluding that exer-
cise in general produces improved mobility in
nursing home residents. To answer this question
we must look at the results of the t test, as shown
in Table 19.8.

The following information was presented:

¢ The t obtained was —0.695, the minus sign
simply reflecting that the mean for the exercise
group was less than the mean for the control
group. At value of 0.695 is quite ‘small’ in
relation to the critical values for t shown in
Appendix B.

¢ ‘df refers to degrees of freedom. For the con-
trol group’s t test, df = n, + n, — 2 (Schwartz &
Polgar 2003). Here, df = 11 + 11 — 2 = 20, as
shown in Table 19.8.

¢ ‘Sig. (2-tailed)’ refers to the probability of a dif-
ference between the means being obtained by
chance, i.e. p (H, is true) (see Ch.18). The deci-
sion rule is that we reject H, if p < 0.05. Here the
calculated probability is 0.495 and therefore we
retain H,. We conclude that the results were not
statistically significant.

¢ The ‘mean difference’ refers to the difference
between the two sample means; that is, 8 — 9 =
—1, as shown in Table 19.8.

© ‘'Standard error difference’ refers to the standard
error of the distribution of sample means. We will

Mean Standard 95% confidence interval

difference  error of the difference
difference :

—1.00 1.440 —4.003 2.003

—1.00 1.440 —4.018 2.013



not discuss this statistic in detail. However, as
shown in Chapter 17, the standard error enables
us to calculate a 95% confidence interval; in this
case for X, — X..

° The lower and upper limits show that the true
(i.e. population) difference (i, — p,) probably (p =
0.95) falls between —4.003 and 2.003. This is a
wide range for a confidence interval and therefore
indicates that residents who exercise might be
able to walk either four extra metres or, for that
matter, two metres less than those who don’t
exercise. Of course, any other difference between
the two limits is possible. Clearly, such results are
far too variable to attribute any clinical benefits to
the exercise programme.

Summary

There are a variety of statistical tests available for
analysing the significance of the obtained data.
The statistical test appropriate for analysing a
given set of data is selected on the basis of:

1. the scaling of the data

2. the dependence/independence of the
measurements

3. the number of groups being studied
4. specific requirements for using a statistical test.

Generally, parametric and non-parametric stat-
istical tests were distinguished on the grounds of
the scaling of the data and the assumptions under-
lying the sampling distributions.

None of the individual statistical tests was dis-
cussed in detail, except the x2? test, which was
presented as an example. Together with the dis-
cussion on the z and ¢ tests in Chapter 18, the
x? test illustrates the principle that theoretical
sampling distributions can be generated, and the
probability of obtaining specific outcomes can be
calculated. If the obtained value of the inferen-
tial statistic is greater than or equal to the critical
value, the null hypothesis can be rejected at the
level of significance specified by the Type I error
rate (o). This is the case regardless of which par-
ticular statistical test is being used.

The retention of H, might reflect a correct
decision, or a Type II error. Sample size is a factor
which contributes to Type II error rate, as shown
in both Chapters 18 and 20.

Self-assessment

Self-assessment

Explain the meaning of the following terms:

chi-square
contingency table
expected frequency
non-parametric test
observed frequency
parametric test

True or false

1. Inferential statistics are used to decide if differ-
ences obtained in sample data are persistent,
‘real’ trends.

2. The selection of descriptive and inferential
statistics is independent of the scaling of the
data.

3. Inferential statistics must be used regardless of
the nature and aims of an investigation.

4. Parametric tests are used to analyse the signifi-
cance of interval or ratio data.

5. The use of non-parametric tests depends on the
normal distribution of the underlying population.

6. Each statistical test entails the use of sampling
distributions for calculating the probability of the
obtained sample cutcomes.

7. ltis impossible to select an appropriate statis-
tical test before the data are collected.

8. The number of groups being compared in an
investigation influences the selection of the
appropriate statistical test.

9. A basic assumption for using t is that the sam-
ples were drawn from a normally distributed
population. A basic assumption of x2 is that the
scores in each cell are independent.

10. When using x?, the closer the observed fre-
quency for each cell is to the expected frequency,
the higher the probability of rejecting H,..

11. In order to reject the null hypothesis, x2,, > x2,.

12. The 2 sampling distribution is a family of
curves, the distribution of which varies with the
degrees of freedom.

13. The x? test is appropriate for testing hypotheses
about proportions.

14. Each entry in a 2 table is a frequency.

15. The value of f is looked up in the appropriate x?2
table.

16. If the f, and £, values are the same for each cell,
X2, will not be statistically significant.

227



17. The decision level, «, is generally set at 0.05 or
0.01 with x2.

18. If we use sample data to calculate the values of
f,, then we use contingency tables for calculat-
ing x2,-

19. A2 X 2 contingency table shows the relation-
ship between two variables.

20. ‘rc’ stands for the degrees of freedom fora 2 X
2 contingency table.

Multiple choice

1. In a study, three independent samples are com-
pared and the dependent variable is measured
on a ratio scale. A statistical test appropriate for
analysing these findings is:

a x?

b Mann-Whitney U

ct

d ANOVA (analysis of variance).

2. In a study, two independent samples are com-
pared and the dependent variable is measured
on an ordinal scale. A statistical test appropriate
for analysing these findings is:

a x?
b Mann-Whitney U
ct
d Wilcoxon.
3. Which of the following is a ‘non-parametric’
test?
a ANOVA (analysis of variance)
bt
c z
d Kruskal-Wallis H.
4. Which of the following is a ‘parametric’ test?
a Median test
b McNemar's test
cz
d Cochran’s Q.
5. Which of the following tests is appropriate for

analysing data where three or more groups were
used?

az
bt
c x?
d Sign test.

6. The larger the discrepancy between f, and f, for
each cell in a contingency table:

a the more likely it is that the results will not be
significant
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b the more likely it is that H, will be rejected

¢ the more likely it is that the population pro-
portions are the same

d the more likely it is that the population pro-
portions are different

e aandc
f bandd.
. _— 2.
7. For any given level of significance, X2,
a increases with increases in sample size

b decreases with increases in degrees of
freedom

¢ increases with increases in degrees of
freedom

d decreases with increases in sample size.
8. A contingency table:
a always involves two degrees of freedom
b always involves two dependent frequencies
c always involves two variables
d all of the above
e aandb.

9. Entries into the cells of a contingency table
should be:

a frequencies

b means

Cc percentages

d degrees of freedom.

10. The degrees of freedom for a contingency
table:

a equaln —1

b equalrc — 1

¢ cannot be determined ifr = ¢

d equal (r — 1) (c —1).
11. x2 should not be used with a 2 X 2 contingency

table if:

a df > 1

b f is below 5 in any cell

¢ f,is below § in any cell

df=f

e bandc.
An investigator is interested in determining whether
there is a relationship between gender and suscep-
tibility to a substance known to trigger an allergic

response. ‘Susceptibility’ is measured as yes
or no.

Questions 12-15 refer to this example. The

raw data are presented in the contingency table
below.



Female 90
Male 60

Total

12

13.

14.

15.

16.

i 17

Not st

:--.":'ég:ii':g_f?ﬁ I‘;!i‘\:;‘.‘j‘u?‘iéé":’
110

140

150 250

. The value of 2, is:

a 2.50

b 8.09

c 9.60

d 11.05

The value of df is:

a2

b 1

c 3

d need more information.

Using o = 0.05, X2 is:

a 3.841

b 5.412

c 2.706

d —3.841

Using o« = 0.05, what is your conclusion?

a Accept H: there is no relationship between
gender and susceptibility.

b Reject H: there is a significant relationship
between gender and susceptibility.

¢ Fail to reject H: the study does not show a
significant relationship between gender and
susceptibility.

d Fail to reject H;: this study shows a sig-
nificant relationship between gender and
susceptibility.

In selecting an appropriate statistical test:

a z should be used as it is most powerful

b t should be used as it takes the sample size
into account

¢ the choice depends on the design of the
study

d x* should be avoided.

The 2 test requires that:

a data be measured on a nominal scale

b data conform to a normal distribution

¢ expected frequencies are equal in all
cells

d all of the above occur.

Self-assessment

The following information should be used in
answering questions 18-25. Aerobics classes are
conducted by the student union of a tertiary insti-
tution; although there are equal numbers of male
and female students enrolled at the institution, it is
observed that far more female than male students
attend. A test is performed to see whether the pro-
portion of the two sexes at the class is representa-
tive of the proportion of the two sexes enrolled at
the institution as a whole. Of the 50 students who
attend the classes, 10 are male. A x? is conducted
on these data.

18. What type of x2 will be conducted?
a one-way
b two-way
c contingency analysis
d parametric.
19. How many cells will there be in the x? table?
a1
b 2
c 3
d 4
20. What is the expected frequency of male stu-
dents at the aerobic classes?
a 10
b 40
c 25
d 8
21. What is the obtained value of x\??
a 4.5
b 25
c 18.0
d 9.0
22. What are the degrees of freedom?
a i
b2
c 49
d 48
23. If o is set at 0.01, what is the critical value
of x*?
a 0.0201
b 4.605
c 9.210
d 6.635
24. What statistical decision should be made on the
basis of these data?
a Reject null hypothesis.
b Retain null hypothesis.
¢ Increase o.
d Increase size of sample.

N
N
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25. What conclusion can be drawn on the basis of 27. The obtained 2 is:
these data? a 1.33
a Overall, the tendency for more females than b 13.5
males to attend the classes is not statistically c 8.71
significant. d 6.67
b There is a statistically significant tendency 28. With o set at 0.05, the critical value of 2 is:

for more females than males to attend the

classes (o« = 0.01). a 3.841
¢ The aerobics classes should have their format b 5.991
changed to attract more male students. ¢ 6.635
d There is a statistically significant trend (o = d 0.013
0.01) for differential attendance by the two 29. The correct statistical decision in this case is to:
sexes, but it is impossible to state the direc- a reject H,
tion of this trend. b retain H,

The following information should be used in answer- €' Hocrenss o

ing questions 26-31. In a test of the effectiveness d increase o.

of phenothiazine in treating schizophrenia, 60 30. The appropriate conclusion to be drawn from

patients are randomly assigned to receive either the these data is:

drug or a placebo; after 2 weeks of daily treatment a Patients receiving the active drug are not

each patient is assessed by the chief psychiatrist significantly more likely to get an ‘improved’

as ‘improved’ or ‘not improved’. A2 X 2 table is rating than those receiving the placebo.

constructed to indicate improved number of patients b Those receiving the active drug are signifi-

falling into each category: cantly more likely to be rated as ‘improved’
(o« = 0.05).

AR 3 LT i T AT T ¢ The drug cures schizophrenia.

Treatmen sy d The improvements cannot be due to the drug,
T e as some people received the drug and did

__Phenothiazine . not improve.

31. Following the publication of this study, it is
improved el L0 revealed that the psychiatrist who dig the rat-
Not improved 10 20 ings of improvement was also the person who

had assigned the patients to phenothiazine or
placebo groups. What type of problem could
26. The degrees of freedom in this table are: have invalidated these findings?
a i a Rosenthal effects.
b2 b Placebo effects.
c 3 ¢ Instrumentation effects.
d 4 d All of the above.
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Introduction

When researchers have demonstrated statistical
significance within a study, what have they actu-
ally established? Statistical significance suggests
that it is likely that there is a similar effect or
phenomenon in the population from which the
study sample has been drawn. However, it is not
correct to assume that statistical significance neces-
sarily implies clinical importance or usefulness.
We must also establish the clinical or practical
significance of our results following the step of
demonstrating statistical significance.

The aims of this chapter are to discuss the
following:

1. Effect size, that is, how large the relationships or
differences observed in the data are.

2. The relationship between effect size and statistical
and clinical significance.

3. The determinants of statistical power.
4. Basic principles of clinical decision making.

Effect size

In a clinical intervention study, the effect size is
the size of the effects that can be attributed to
the intervention. The term effect size is also used
more broadly in statistics to refer to the size of
the phenomenon under study. For example, if
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we were studying gender effects on longevity, a
measure of effect size could be the difference in
mean longevity between males and females. In
a correlational study, the effect size could be
represented by the size of the correlation between
the selected variables under study. There are many
measures or indicators of effect size selected on
the basis of the scaling of the outcome or depend-
ent variable (Sackett et al 2000).

The concept of effect size can be illustrated by
results from two student research projects super-
vised by the authors.

Study 1: Test-retest reliability of a
force measurement machine

In the first study, the student was concerned with
demonstrating the test-retest reliability of a device
designed to measure maximum voluntary forces
being produced by patients’ leg muscles under two
conditions (flexion and extension). Twenty one
patients took part and the reliability of the measure-
ment process was tested by calculating the Pearson
correlation between the readings obtained from
the machine in question during two trials separated
by an hour for each patient. The results are shown
in Table 20.1. Both results reach the 0.01 level of
significance.

The student was ecstatic when the computer
data analysis program informed that the correla-
tions were statistically significant at the 0.01 level
(indicating that there was less than a 1 in 100
chance that the correlations were illusory or actu-
ally zero). We were somewhat less ecstatic because,
in fact, the results indicated that approximately
69% (1 - 0.56%) and 71% (1 - 0.54?) of the vari-
ation was not shared between the measurements
of the first and second trial. In other words, the
measures were ‘all over the place’, despite statisti-
cal significance being reached. Thus, far from being
an endorsement of the measurement process, these
results were somewhat of a condemnation. This

Table 20.1 Pearson correlations between trials 1 and
Flexion __Extension
0.54

0.56
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is a classic example of the need for careful inter-
pretation of effect size in conjunction with statisti-
cal significance.

Study 2: A comparative study of
improvement in two treatment
groups

The second project was a comparative study of
two groups: one group suffering from suspected
repetition strain injuries (RSI) induced by com-
puter keyboard input and a group of ‘normals’.
An Activities of Daily Living (ADL) assessment
scale was used and yielded a ‘disability’ index of
between 0 and 50. There were 60 people in each
group. The results are shown in Table 20.2.

The appropriate statistic for analysing these
data happens to be the independent groups t test,
although this is not important for understanding
this example. The t value for these data was sig-
nificant at the 0.05 level. Does this finding indi-
cate that the difference is clinically meaningful or
significant? There are two steps in interpreting the
clinical significance of the results.

First, we calculate the effect size. For interval
or ratio-scaled data the effect size ‘d’ is defined as:

.

a

d:

where 1, — i, refers to the difference between the
population means and o, the population standard
deviation.

Since we rarely have access to population data
we use sample statistics for estimating population
differences. The formula becomes:

Mean

Standard deviation 16 152



How to interpret null (non-significant) results

where X, - X, indicates the difference between
the sample means and s, refers to the stand-
ard deviation of the ‘normal’ or ‘control’ group.
Therefore, for the above example, substituting
into the equation yields:

30.4 —33.2

1.2
—2.33

d =

Il

In other words, the average ADL score of the
people with suspected RSI was 2.33 standard
deviations under the mean of the distribution of
‘normal’ scores. The meaning of d can be inter-
preted by using z scores. The greater the value of
d, the larger the effect size.

Second, we need to consider the clinical impli-
cations of the evidence. It might be that the
difference of 2.8 units of ADL scores is import-
ant and clinically meaningful. However, if one
inspects the means, the differences are slight,
notwithstanding the statistical significance of the
results. This example further illustrates the prob-
lems of interpretation that may arise from focus-
ing on the level of statistical significance and not
on the effect sizes shown by the data.

When we say that the findings are clinically
significant we mean that the effect is sufficiently
large to influence clinical practices. It is the health
workers rather than statisticians who need to set
the standards for each health and illness determin-
ant or treatment outcome. After all, even rela-
tively small changes can be of enormous value in
the prevention and treatment of illnesses. There
are many statistics currently in use for deter-
mining effect size. The selection, calculation and
interpretation of various measures of effect are
beyond our introductory book, but interested
readers can refer to Sackett et al (2000).

How to interpret null
(non-significant) results

As we discussed in previous chapters, the
researcher will sometimes analyse data that show
no relationships or differences according to the
chosen statistical test and criteria. In other words,

the researcher cannot reject the null hypothesis.
There are several reasons why the researcher may
obtain a null result.

1. The trend or difference that the researcher origin-
ally hypothesized is incorrect.

2. The sample included in the analysis is unrep-
resentative, so the effect does not show up,
although it exists in the wider population.

3. There are insufficient cases in the sample to
detect the trend; this is especially a problem if the
trends are subtle (i.e. the effect size is small).

. The measurements chosen have very high or
inherent random variability.

5

Therefore, if the researcher obtains a null result,
one or more of the above explanations may be
appropriate. There are, however, steps that can
be taken to minimize the chance of missing real
effects. In order to understand these measures, it
is necessary again to invoke the table illustrating
the possible outcomes of a statistical decision (as
shown in Table 20.3).

There are four possible outcomes. On the basis
of the statistical evidence you may: (i) correctly
conclude there is an effect when there is indeed
an effect; (ii) decide that there is an effect when
there is not (this is a false alarm or Type I error);
(iii) decide that there is not an effect when there
really is (this is a miss or Type II error); or (iv)
correctly decide there is not an effect when
indeed there is not. The probability that research-
ers derive from their statistical tables is in fact the
probability of making a false alarm or Type I error.
This value does not tell us, however, how many
times we will fail to identify a real effect. The
probability of missing a real effect (or making a
Type 11 error) is affected by the size of the actual
effect and the number of cases included in our
study. If you have large effects and large samples,
the number of misses will be small. To detect a
small effect size larger samples are needed.

stical decision outcomes
el Ll .

.

Effect

Correct

‘Miss’ Type Il error

No effect ‘False alarm’ Type | error  Correct
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1

be demonstrated

Low

Statistical power analysis

In statistical analysis we need to know how likely a
miss is to occur. We can do this by calculating the
statistical power of a design. The statistical power
for a given effect size is defined as 1 - probability
of a miss (Type II error or 3). Thus, if the power
of a particular analysis is 0.95, for a given effect
size we will correctly detect the existence of the
effect 95 times out of 100. Power is an important
concept in the interpretation of null results. For
example, if a researcher compared the improve-
ments of two groups of only five patients under
different treatment circumstances, the power of
the analysis would almost certainly be low, say
0.1. Thus 9 times out of 10, even with an effect
really present, the researcher would be unable to
detect it.

It is essential to be careful in the interpret-
ation of null results where they are used to dem-
onstrate a lack of superiority of one treatment
method over another, especially when there is a
low number of cases. This may be purely a func-
tion of low statistical power rather than the equiv-
alence of the two treatments. Unfortunately the
calculation of statistical power is complicated and
beyond the scope of this text. However, there are
technical texts, such as Cohen (1988), that are
available to look up the power of various analyses.
There are also statistical programs that perform
the same function. The best defence against low
statistical power is a good-sized sample. Before
quantitative research projects are approved by
funding bodies or ethics committees, there is the
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Table 20.4 The relationship between effect size, sample size and decision making

Both statistical and clinical significance are likely to

Statistical significance would be likely, but the results
might not indicate clinically applicable outcomes

Statistical significance might not be
demonstrated, but clinical significance
would be indicated

Neither statistical nor clinical significance is
likely. Statistically significant results might result
in Type | error

requirement that sufficient data will be collected
to identify real effects.

Effect size is a key determinant of both statis-
tical and clinical significance. We are more likely
to detect a significant pattern or trend in our sam-
ple data when a factor has a strong influence on
health or illness outcomes. A very powerful treat-
ment such as the use of antibiotics for bacterial
infections could be demonstrated even in a small
sample. Table 20.4 shows the association between
effect size and sample size for determining stat-
istical and clinical significance for the results of
research and evaluation projects. The most useful
results for clear decision making occur when both
effect size and sample size are large. Where the
effect size is large but the results are not statis-
tically significant, it might be useful to replicate
the study with a larger sample size. Unfortunately,
in real research it might be difficult to obtain
a large sample and the effect size, we discover,
might be disappointingly small. It is for this rea-
son that researchers make the best use of previous
research and, if possible, complete pilot studies.
The evidence from previous research and the
results of pilot studies enable us to conduct power
analyses for estimating the minimum sample size
for detecting an effect if it is really there.

Table 20.5 shows how evidence for statistical
and clinical significance can be combined to inter-
pret the findings of a study. A clear positive out-
come is when there is strong evidence for both
clinical and statistical significance. In this case we
are confident that the information obtained is clin-
ically useful and generalizable to the population.



ble 20.5 Ho to iterpret findings
 Clinical significance

Clinical decision making

Sttstialsgnificance

No

Yes Clear: strong evidence for treatment effect Inconclusive: need for further research (e.g.
with larger samples)
No Inconclusive: suggests findings might not be Clear: strong evidence for lack of a treatment

oo

Another clear finding, provided that the sample
size was adequate, is the lack of clear treatment
effect. Such negative findings can be very use-
ful in eliminating false hypotheses or ineffectual
treatments.

Clinical decision making

The decisions confronting a clinician making a
diagnosis on the basis of uncertain information are
similar to the scientist’s hypothesis testing pro-
cedure. As a hypothetical example, assume that
a clinician wishes to decide whether a patient
has heart disease on the basis of the cholesterol
concentration in a sample of the patient’s blood.
Previous research of patients with heart dis-
ease and ‘normals’ has shown that, indeed, heart
patients tend to have a higher level of cholesterol
than normals.

When the frequency distributions of choles-
terol concentrations of a large group of heart
patients and a group of normals are graphed, they
appear as shown in Figure 20.1. You will note that,
if patients present with a cholesterol concentra-
tion between 1.0 and 2.4mg/cc, it is not possible
to determine with complete certainty whether
they are normal or have heart disease, due to the
overlap of the normal and heart disease groups in
the cholesterol distribution.

Therefore, the clinician, like the scientist, has
to make a decision under uncertainty: to diagnose
pathology (that is, reject the null hypothesis) or
normality (that is, retain the null hypothesis). The

meaningful — need further research

effect

Patients

with heart
conditions

Frequency
T

1 | - L1 1 1

1 | |
241 mglec
Decision criterion

Figure 20.1 = Decision criterion: risk of Type Il error (miss).

Table 20.6 Clinical decision outcomes

Reality Decision: pathology  Decision:
no pathology
No pathology  ‘False alarm’ Type | error  Correct decision
Pathology Correct decision ‘Miss’ Type Il
error

clinician risks the same errors as the scientist, as
shown in Table 20.6.

The relative frequency of the type of errors
made by the clinician can be altered by moving
the point above which the clinician will decide
that pathology is indicated (that is, the deci-
sion criterion). For example, if clinicians did not
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| with heart
‘:; conditions
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Decision criterion

Figure 20.2 » Decision criterion: risk of Type | error (false
alarm).

bother their colleagues or patients with false
alarms (Type I errors), they might shift the deci-
sion criterion to 2.5mg/cc (Fig. 20.1). Any patient
presenting with a cholesterol level below 2.5mg/
cc would be considered normal. In this particular
case, with a decision point of 2.5mg/cc, no ‘false
alarms’ would occur. However, a huge number of
people with real pathology would be missed (Type
IT errors).

If clinicians value the sanctity of human
life (and their bank balance after a successful
malpractice suit) they will probably adjust the
decision criterion to the point shown in Figure
20.2. In this case, there would be no misses but
lots of false alarms.

Thus, most clinicians are rewarded for adopt-
ing a conservative decision rule, where misses
are minimized, by receiving lots of false alarms.
Unfortunately, this generates a lot of useless,
expensive and sometimes even dangerous clinical
interventions.

Summary

In the interpretation of a statistical test, the
researcher calculates the statistical value and then
compares this value against the appropriate table
to determine the probability level. If the probabil-
ity is below a certain value (0.05 is a commonly
chosen value), the researcher has established the
statistical significance of the analysis in question.
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The researcher must then interpret the implica-
tions of the results by determining the actual
size of the effects observed. If these are small,
the results may be statistically significant but clin-
ically unimportant. Statistical significance does
not imply clinical importance.

A null result (indicating no effects) must
be carefully interpreted. It is possible that the
researcher has missed an effect because of its small
size and/or insufficient cases in the analysis. The
statistical analysis measures the chance of correctly
detecting a real effect of a given size. Thus, a null
result may be a function of low statistical power,
rather than there being no real effect. It is neces-
sary to carry out a statistical power analysis before
undertaking a research project.

There are several criteria, beyond statistical
significance, which need to be considered before
making decisions concerning the clinical relevance
of investigations. The most important criterion is
a large and consistent effect size. In addition to
effect size, the determination of clinical signifi-
cance is influenced by values and economic limita-
tions concerning the administration of health care
in a given community.

Self-assessment

Explain the meaning of the following terms:

clinical significance
effect size

null result

power analysis

social significance
statistical significance

True or false

1. If the effect size is small, clinical significance will
be large.

2. In order to establish statistical significance, clin-
ical significance must first be established.

3. In order to establish clinical significance, statis-
tical significance must first be established.

4. The effect size in an analysis is directly meas-
ured by the size of the p value associated with
the statistic.



High inherent variability in measures will
promote the detection of effects within data.
If a statistical analysis has high power, this
means that 3 will be low.

A ‘miss’ is a correct rejection of the null
hypothesis.

If a statistical analysis has low power, the null
hypothesis will be accepted more frequently.

. Power = 1 -8 (Type Il error).
. It is more difficult to detect small effects in data

where the statistical power is high.

Multiple choice

1.

i3 = 0.80 and o = 0.1, the power of an analysis

equals:

a 09

b 0.7

c 0.2

d 0.65

In a study, there was a 1% difference in improve-

ment of systolic blood pressure for two groups

of patients receiving different treatments. This

was statistically significant at p = 0.05. The

results probably demonstrate:

a clinical and statistical significance for the
difference

b clinical significance only

c statistical significance only

d neither clinical nor statistical significance.

. A study of the relationship between family

income and probability of occurrence of nutri-
tionally related disorders demonstrated a correl-
ation of 0.8 with p <0.001. The results probably
demonstrate:

a clinical and statistical significance of the
relationship

b clinical significance only

c statistical significance only

d neither clinical nor statistical significance.

. If the effect size in a study is large, the results

are likely to have:

a clinical and statistical significance for the
difference

10.

Self-assessment

b clinical significance only
c statistical significance only
d neither clinical nor statistical significance.

If the power of the statistical analysis of a study
is high there will be:

a fewer misses

b fewer correct rejections

¢ fewer correct acceptances
d more misses.

The effect of large sample sizes in a study upon
statistical power is generally to:

a increase it
b decrease it
¢ not affect it.

. In a study, the effect of larger sample sizes upon

clinical significance is generally to:

a increase it

b decrease it

¢ not affect it.

In a study, the effect of a larger sample size
upon obtained statistical significance as meas-
ured by p is generally to:

a increase it

b decrease it

¢ not affect it.

If a null result is obtained in an experimental
clinical study, the clinical significance of any
observed differences between treatment groups:
a cannot be supported

b can be supported if it is big

¢ can be supported if it is small

d should be determined by power analysis.

If a power analysis is not performed, is it sens-
ible to accept a null result from a study at face
value?

a Yes
b No.
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Section Six

Discussion, questions

and answers

Inferential statistical tests arise from the desire
of clinical researchers to generalize from the data
they have collected in a sample to the population
from which the sample has been drawn. ‘Is what I
have found in my sample a true representation of
the population (and hence other samples)?’ is the
basic question to be answered through the use of
inferential statistical tests.

Inferential statistical tests all have the same basic
format. The data are processed using the appro-
priate calculation procedure (often with the sup-
port of a computer program) and the value of the
statistic is calculated. This value obtained is then
compared with a table of known values in order to
interpret the outcome of the statistical test. This
is very much like the application of clinical tests
where, in order to interpret the value of the test
result, it is compared with a known standard. As
with the clinician, the clinical researcher needs to
know which test to choose in which circumstance.
It would not be appropriate to try to measure the
weight of a patient by giving her an X-ray. Similarly,
it is not appropriate to use a 2 test when the ¢ test
is required. It is beyond the scope of an introduc-
tory text to have an extended discussion of the
various types of statistical tests and when they
might be used (although it should be noted that
there are many fewer statistical than clinical tests).
However, it is essential that the student under-
stands the basic use of inferential tests.

Consider the following analysis using X2
This statistic is designed to test the relationship
between variables with nominal or categorical
scales (i.e. the values are categories).

The clinical researcher is using the x? test to
examine the relationship between length of stay in
hospital and the rate of unplanned readmissions.
These data are described more fully in Section 5.
The goal is to determine whether there is a stat-
istically significant association between the two
variables. The raw data appear in Table D20.1.

As demonstrated in Section 5, we could use
the Pearson correlation to analyse these data.
However, to illustrate the use of %2 we will
recode the data to categorical data and use this
technique. The data will be recoded using the
averages for each variable to convert the data
from ratio data to categorical data. For example,
all those cases (hospitals) with a mean length of
stay of 13.6 days or greater will be considered as
having an ‘above-average’ length of stay. Those
cases (hospitals) with a stay below 13.6 days will
be considered as having a ‘below-average’ length
of stay. The same procedure will be followed for
readmission rates of 4.47 or greater. These are
the respective means for the two variables shown
in Table D20.1. The recoded data appear as
Table D20.2.

From these data we can construct a contin-
gency table which shows the relationship between
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Table D20.1 Average lengths of stay and readmission rates per 100 patients for patients with fractured neck of femur at 30

hospitals

Hospital Average Unplanned
' length of stay readmission
(days) rates per
100 patients
1 11.100 7.800
2 11.200 6.500
3 11.200 4.300
4 11.200 5.500
5 11.700 5.100
6 12.100 5.200
7 12.100 5.000
8 12.100 4.900
9 12.300 4.800
10 12;400 3.466 i
11 | 12.400 5.000
12 12.500 4.300
13 13.100 3.900. X
14 13.100 3.300
i ‘ 4.700

15 13.200

the two newly coded variables. We do this by
counting the number of times the 30 cases fall
into the appropriate categories.

As can be seen from Table D20.3, only one hos-
pital with an above-average length of stay had an
above-average readmission rate, while 11 hospitals
with above-average lengths of stay had below-
average readmission rates.

These data can be subjected to x? analysis. If
these calculations are performed, we obtain a x?
value of 9.98, df = 1, p < 0.01. In other words
there is a statistically significant association
between length of stay and readmission rates for
the 30 hospitals. This confirms the analysis con-
ducted in Section 5.
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Hospital Average ~ Unplanned
- length of stay readmission
(days) rates per
100 patients
16 13.200 4.500
17 13.200 5.500
18 13.300 4.100
19 13.700 3.200
20 13.9(.)0. 3.400
21 14.100 3.500
22 14.200 3.400
23 1 4.260 6.000
24 14.900 4.400
25 . 15.360' ' 3.300
26 15.400 4.200
27 15.400 .4.300
28 15.500 4.100
29 16.300 3.200
30 22.460 3.300
Questions

1. From Table D20.1, how many hospitals have
a below-average length of stay, if the average
length of stay is 13.6 days? How many have an
above-average length of stay? Why is it not 15
above and below?

2. From Table D20.3, why is there one degree of

freedom in this analysis?

3. On the basis of this analysis, what would you

conclude about the relationship between average
length of stay in hospital and unplanned readmis-
sion rates for patients with fractured neck of
femur at the 30 hospitals?

4. To what other groups of patients could these find-

ings be generalized?
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Table D20.2 Recoded average lengths of stay and readmission rates per 100 patients for patients with fractured neck of femur
at 30 hospitals

Unplanned

Hospital Average Average Unplanned
length of stay readmission length of stay readmission
(ﬁqys} (days) rates
1 Below average Above average 16 Below average Above average
2 Below average Above average 17 Below average Above average
3 Below average Below average 18 Below average Below average
4 Below average Above average 19 Above average Below average
5 Below average Above average 20 Above average Below average
6 Below average Above average 21 Above average Below average
7 Below average Above average 22 Above average Below average
8 Below average Above average 23 Above average Above average
9 Below average 2 Above average 24 Above average Below average
10 Below average Below average 25 Above average Below average
11 Below average Above average 26 Above average Below average
12 Below average Below average 27 Above average Below average
13 Below average Below average 28 Above average Below average
14 Below average Below average 29 Above average Below average
15 ; Beluw éverage o Above average 30 Above average Below average

Table D20.3 Contingency table of relationship between

how the median is defined, i.e. the score above
which and below which half of the cases fall, the

average length of stay and readmission rates at 30 hospitals

for patients with fractured neck of femur mean does not always fall at the exact half-way

point of the sample.
2. The number of degrees of freedom in a contin-
gency table is calculated by the formula:

Unplanned readmission rate
Below average

Lengthof stay  Above average

df = (number of rows — 1) X

Alrmvgraverage : ! L (number of columns — 1)
Below average 12 6 _ (12 - x@E@-1)
3. There is a moderately sized statistical associ-
Answers

ation between average length of stay in hospital
and unplanned readmission rates. That is, those
hospitals with shorter lengths of stay for patients
with a fractured neck of femur tend to have higher
unplanned readmission rates.

1. In this sample, 18 hospitals have a below-
average length of stay. Twelve hospitals have an
above-average length of stay. Although that is
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4. ltis difficult to say. The current data include
patients with one condition only, i.e. fractured
neck of femur. These patients may be atypical
of other acute/surgical patients; they are likely
to be older and perhaps more debilitated. These
analyses would need to be extended to other
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types of patients before the results could be
generalized. The country in which the study has
been performed also needs to be considered, as
procedures and incentives may vary considerably
from one country to the next.
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Dissemination and critical
evaluation of research
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Having completed the analysis and interpretation
of our data, we are now ready to communicate
our results to the community of health scientists
and professionals. Depending on the context in
which our research was carried out, this entails
the writing up of a report, a thesis or a ‘paper’ for
a health sciences journal. The most common way
of communicating research findings by established
researchers is first to report the results at a pro-
fessional conference and then to write a more for-
mal paper for a relevant journal.

Each journal has its particular set of rules and
requirements for how research projects should be
written up for publication. In general, at least for
quantitative research, the format for presenting
our research follows the sequential stages of the
research process outlined in the present book. This
general format is outlined in Chapter 22, which
includes a detailed discussion of the specific sec-
tions of a research paper and outlines some ‘stylis-
tic’ considerations required by journal editors.
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It is an ethical requirement that we report our
results in an accurate and honest fashion. Before
a paper is published in a reputable journal, it is
critically evaluated by experts in the area (called
referees) for errors or problems. However, some-
times problems remain unidentified. Ultimately, it
is our task as health professionals to read import-
ant publications in a critical fashion. We owe it to
our patients and clients to be cautious and critical
concerning recent developments in theories and
practices. However, being critical does not imply
the adoption of a cynical or derogatory approach
towards the work of other health researchers. We
are aware that ethical and economic constraints, and
the complex nature of the subject matter, as dis-
cussed in Section 2, make it difficult to ensure the
external and internal validity of research projects.

The critical evaluation of a paper is not like
judging a dog show; we do not simply award or
subtract points for the strengths and weaknesses
of a research project. Rather, if the information
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is relevant to advancing the effectiveness of our
practices, we have a stake in the project (even as
readers). In this way, we take an active role in try-
ing to ‘repair’ the problems which might cloud or
invalidate the evidence.

In Chapter 23, we outline some of the crit-
eria which we generally apply to evaluate specific
sections of a research paper. We also discuss the
implications of finding serious problems with the
design, data collection and analysis and interpret-
ations of a research project.
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Dissemination and critical evaluation of research

In effect, a single research project is rarely suf-
ficient either to verify or falsify a theory, or to
demonstrate the effectiveness of a treatment pro-
gramme convincingly. Rather, we need to evalu-
ate and summarize the literature as a whole, that
is, conduct a literature review. Conflicting find-
ings or gaps in the knowledge for a given area of
health care identified in our literature review pro-
vide the impetus for further research, as outlined
in Section 2. In this way research is a circular
process.
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Introduction

Qualitative data are collected through techniques
such as in-depth interviews, focus groups, partici-
pant observation and narratives spoken and writ-
ten by the participants and researchers involved
in the study. Qualitative data analysis refers to
the processes by which researchers organize the
information collected and analyse the meanings
of what was said and done by the participants.
In qualitative data analysis we bring our values,
experiences and social understanding into ana-
lysing and constructing the meaning of what our
respondents were telling us about their lives. At
the same time, qualitative data analysis is prin-
cipled; there are various explicit and shared strat-
egies for summarizing and making sense of the data
and checking the accuracy of our interpretation.
The aims of this chapter are to:

1. Describe the process of interpreting qualitative
research data.

2. Describe the basic procedures involved in con-
ducting content analysis, thematic analysis and
semiotic analysis.

3. Discuss the comparative advantages and disad-
vantages of using different types of qualitative
analyses.

4. Explain basic strategies for ensuring the accuracy
of interpretations.
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Qualitative data analysis

Understanding meaning in
everyday life

Understanding people involves discovering the
contents of people’s minds — their beliefs, desires,
intentions. There is nothing remarkable or super-
natural being implied by this, simply that we infer
mental contents by listening to and observing
what people say and do, taking into account the
social settings in which these actions occur.

For instance, one person says to another:
‘Would you like to come in for a coffee?” What
are the intentions of the speaker? Does he or she
simply want to prepare the dark beverage and
consume it in silence? Or should we look for ‘hid-
den’ or ‘latent’ meanings in order to understand
the speaker’s true intentions? Consider these two
everyday scenarios (Polgar & Swerissen 2000):

1. You have been given a lift by a work mate who had
to go out of his way to drive you home. Although
you are tired, it seems the right thing to offer the
driver refreshments. However, your intention is to
be polite and acknowledge the colleague’s effort;
in fact you are hoping that the invitation will be
refused. The ‘hidden message’ here is: ‘Thank you
and goodbye!’ The worst-case outcome is that the
colleague is too insensitive to read your intentions
and stays around gossiping until midnight. Bad
luck!

2. The British film ‘Brassed Off’ (1996) has a scene
where a young woman is escorted home after a
date by a young man. A dialogue was (approxi-
mately) as follows:

She: Come up for a cup of coffee.
He: 1don’t drink coffee.

She: That’s alright; | don't have any.

The above dialogue shows the nuances in the
everyday use of language. Just as we sometimes
misunderstand meanings and intentions in everyday
life, we can also misinterpret the data produced by
qualitative data collection. To avoid error we need
to cross-check the accuracy of our interpretation.

Coding qualitative data

Qualitative data analysis frequently involves
analysis of verbatim transcripts of dialogues and
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narratives. A common point of departure for ana-
lysing the transcript data is to develop a coding
system. A coding system is to organize the data
into specific classes or categories. There are two
fundamental approaches to coding: predetermined
and emerging with thematic analysis.

Predetermined coding

Predetermined coding uses predetermined categor-
ies to organize and analyse the transcripts.

For example, you might be conducting a survey
to determine how clients experienced a rehabili-
tation programme at your workplace. Say that you
conducted 20 in-depth interviews and produced a
100-page transcript representing what people said
in these interviews. Considering your research
aims, you might code the statements into three
categories:

1. Satisfaction with the rehabilitation programme.
2. Dissatisfaction with the rehabilitation programme.
3. Neutral statements.

At the simplest level, analysing the first two
categories would enable us to understand the rea-
sons why the clients found the rehabilitation pro-
grammes to be satisfactory or unsatisfactory. This
information could be useful for improving the pro-
gramme. In most studies the coding system would
be a good deal more elaborate.

Coding and thematic analysis

An alternative approach to using predetermined
codes is to develop a coding system that identifies
common themes as they emerge from the text.
Different qualitative researchers advocate differ-
ent approaches to coding but it typically involves
the following steps. The researchers first study
their materials, in this case transcripts, and develop
a close familiarity with the material. During this
process, all the concepts, themes and ideas
are noted to form major categories. Often, the
researcher will then attach a label and/or number
to each category and record their positions in the
transcript. Coding is an iterative process (we
retrace our steps), with the researcher coding and
recoding as the scheme develops. The researchers,



having developed the codes and coded the trans-
cripts, then attempt to interpret their mean-
ings in the context in which they appeared. The
reporting of this process typically involves ‘thick’
or detailed description of the categories and their
context, with liberal use of examples from the
original transcripts.

Content analysis

Content analysis allows the quantification of
units of meaning occurring in a text or a number
of texts. Content analysis can be seen as a blend-
ing of quantitative and qualitative methods. The
recognition and coding of meaning are qualitative,
while the counting of the meaningful ‘chunks’
is quantitative. The ‘meaningful chunks’ can be
words, sentences or paragraphs, that is, the units
of language that were coded by the researchers
from the narratives and dialogues.

For example, in an unpublished study one of
the authors was interested in how leading news-
papers were representing the use of stem cells in
medical research. The following research ques-
tions were asked:

1. How extensive was the newspaper coverage of
the medical use of stem cells?

2. What was the attitude of the newspapers
(positive, negative or neutral) to the use of stem
cells?

In relation to question 1, the data were col-
lected by identifying relevant newspaper articles
published on the topic and measuring the length
of the columns. They were quantified by count-
ing the number of articles published per month
across the selected time interval. The data rele-
vant to question 2 were obtained by identify-
ing statements supportive or critical of using
stem cells or simply ‘neutral’ descriptions of the
nature and possible uses of stem cells. The col-
umn lengths for each of the three categories were
measured and the percentages devoted to each
were graphed across the months. Therefore, the
content analysis provided evidence for the level
of interest and changing attitudes of the media
towards the use of stem cells. This evidence was

Content analysis

relevant to understanding the cultural context in
which government policy for using stem cells was
being formulated.

The discussion of content analysis provides a
good opportunity for raising the issue of compu-
ter-assisted data analysis. As the texts are often
transcribed using personal computers the text is
available in electronic form. This means that the
text can be fed into a software package to assist
with its analysis. For example, say that the data
representing the contents of a hundred newspaper
articles were transcribed into a software package.
We could now introduce our codes and identify
the segments of the whole text which use the rel-
evant words/phrases/sentences. The segments can
then be retrieved, examined or modified (cut and
paste) on screen. Also, various frequency counts
can be readily performed using software tools.

A detailed discussion for selecting and using
computer packages is beyond the scope of the
present book. Interested readers might find Liam-
puttong Rice & Ezzy (1999, pp 202-210) a useful
introduction to selecting and using currently avail-
able software packages for expediting and improv-
ing qualitative data analysis in general (not only
for content analysis). Liamputtong Rice & Ezzy
have discussed the ambivalent attitude among
qualitative researchers to computer-assisted data
analysis. A key objection has been the distanc-
ing of the researcher from the creativity and sur-
prising insights afforded by the more hands-on
approaches. Another objection is that meanings
of words and sentences sometimes do not follow
dictionary definitions but rather have to be under-
stood in the general context. The true meaning of
certain subtle and ambiguous communications can
be missed in crude and electronically conducted
data analyses.

Content analysis is a technique that combines
elements of both qualitative and quantitative
approaches. We interpret the meaning of the text
for developing our coding strategy for organizing
or ‘chunking’ the text and then we use statis-
tics to describe the quantities of text devoted to
a specific point of view. Content analysis can be
used to test hypotheses, for example hypotheses
addressing media perspectives on embryonic stem
cell research.
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Thematic analysis, verstehen
and grounded theory

Counting and hypothesis testing is not the essence
of the qualitative approach. What we are trying
to do is to see things from the perspectives of
our informants and to explain their actions from
their points of view. The German word verste-
hen is often used in phenomenological research to
express the notion of ‘putting ourselves in some-
one else’s shoes’ or attaining a strong empathy
with their situation. Empathy with other people
might seem quite simple, just something we do
as human beings. It is worthwhile remembering,
however, that sometimes we misunderstand how
people feel or think, even when they are our close
friends or family. In the same way, we might mis-
understand the points of view of persons who
are very different to us in age, gender, education,
language and culture. Yet, it is essential to under-
stand the points of views of the people to whom
we offer health services. So how does ‘verstehen’
arise through qualitative health research?

First, as we described earlier, our data collec-
tion must use a technique (in-depth interviews,
written materials, focus groups, etc.) which ena-
bles our respondents to express their point of
view. Second, we can adopt a theoretical frame-
work for explaining our understanding of the
respondents’ experiences. The key point, in the
context of grounded theory, is that our explan-
ations or theories must emerge inductively from
the information provided by our informants. The
theory is constructed gradually as more evidence
is provided by additional informants. Third, the
data are often analysed by coding and thematic
analysis as we outlined earlier in this chapter.

A theme is a grouping of ideas or mean-
ings which emerge consistently in the text. The
themes emerging from the data illuminate the
experiences of the informants and enable us to
understand their points of view (verstehen). Let
us consider an example of thematic analysis.

In a study titled ‘The plight of rural par-
ents caring for adult children with HIV’, Fred
McGinn (1996) studied the experiences of
parents caring for their adult children with
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acquired immuno-deficiency syndrome/human
immuno-deficiency virus (AIDS/HIV). In-depth
interviews were conducted with eight mothers
and two fathers from rural families involved in this
task. The interview transcripts were analysed using
a thematic analysis/grounded theory approach
(Miles & Huberman 1984).
McGinn extracted three major themes:

1. Physical and mental problems related to HIV/
AIDS. Here the parents discussed their
experiences of their children’s problems and
the emotional consequences of physical decline
and death, e.g:

‘He would fall over, so | would sit him in the
wheelchair. And then from within a week

in November he went from not being able
to sit in the wheelchair to not getting out
of bed. And he went from eating little bits
of food along with taking a liquid nutrition
to just liquid nutrition . . . and then he got
to where he wouldn’t swallow the liquid
nutrition and he subsisted on just water and
juices and Pepsi . . . and then in the end
he even refused them: he wouldn’t take
anything . . . He just wasted away.’

2. Stigma associated with having AIDS. Because
of the mode of transmission of AIDS and
superstitious fears of contacting the condition,
many of the parents found themselves socially
isolated at such a very difficult time of their
lives, e.g:

‘That Sunday, | never will forget. | asked
him, ‘Do you want anybody to know?’
And | don’t remember if he said no, but
his head . . . he almost shook it off. No
way did he want anybody to know what
the real problem was. But | want you to
know that that was a terrible, stressful
time. People who came, who normally
would be support for me . . . weren't. It
was a real traumnatic experience.’

3. Health care. This theme summarizes the
difficulties of accessing necessary health
services in rural settings. Even though there were
serious deficiencies in health services, one mother
reported:

‘As for the hospital, | couldn’t have asked
for a better hospital. There may have been



Interpretation and social context

nurses who refused to work with him, |
don’t know, but the nurses that did come
in were great . . . They even hugged and
kissed him goodbye whenever he got well
and left. They didn’t act like they didn’t
want to be around him and | appreciated
that. I think that’s important.’

These three themes enable us to understand
and empathize with the parents of these very
sick young people. Also, they were the bases for
recommending improvements in rural health
care which directly address the needs of AIDS
sufferers and their families in non-metropolitan
environments.

Also, we must note that McGinn's paper
reported the experiences of people in the mid-
1990s, living in rural Canada. With improvements
in the treatment and prevention of AIDS and
a decrease in the stigma attached to the condi-
tion, the experiences of families caring for suf-
ferers have improved. Because of differences and
changes in practices and the cultural context, it is
always important to note the time at and place in
which interpretive research was carried out.

Interpretation and social
context

As we have seen, qualitative data analysis is a sys-
tematic way of interpreting texts. There are many
areas of study (e.g. history, politics, theology)
where the interpretation of texts is an essential
part of the research process. What these diverse
disciplines have in common with qualitative
health research is the recognition that the mean-
ing of language and texts must be interpreted in a
cultural context.

An example is hermeneutics, which is a method
that was originally used to analyse the meaning
of religious texts. Consider the meaning of the
term ‘god’. When the Romans spoke of Augustus
Caesar as a ‘god’, they were referring to him as a
hero who was immortal in the history of Rome.
The use of the term ‘god’ by a polytheistic is
quite different to meanings in the context of con-
temporary Judaeo—Christian or Muslim traditions.

The meaning of the term must be interpreted in
the context of the religious tradition (polytheis-
tic, monotheistic) and the position of the speaker
(believer, non-believer).

An important issue in reading texts is that they
might have implicit (in addition to explicit) mean-
ings. Semiotics is a method of textual interpret-
ation which seeks to uncover the hidden, omitted
meanings implicit in a text. In order to do this,
we must adopt a theoretical framework in terms
of which we can ‘deconstruct’ a text. The theor-
etical framework reflects our understanding of
the culture within which the text was produced.
You have probably read the book Animal Farm by
George Orwell. There are several levels at which
one can read this story; for example:

° A fairy tale about the imaginary lives of farm
animals where animals have human traits and
concerns.

° A morality tale in Aesop’s style about how power
corrupts and leads to betrayal.

e A critique of Stalinism and a retelling of the bloody
history of the Bolshevik revolution and its social
consequences in the Soviet Union.

In order to identify Orwell’s book as a political
critique, one needs to understand the historical/
cultural context in which the author worked and
lived.

To illustrate these points, we will examine a
letter to the editor in a Melbourne newspaper by
a woman writer who was apparently concerned
about the physical and mental health of young
men;

They're just asking for it.

Since the weather improved, it seems that
young men all over the place are discard-
ing their shirts and going about half-naked.
I worry for them. Do they have any idea of
what a provocative and inviting image they
put across?

To my mind, they would be doing themselves
a far greater service if they would just com-
promise a little and get dressed properly. It
might not seem fair, and it might be less com-
fortable, but at least then there wouldn't any
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longer be the danger of urge-driven women
raping young men because of the confusing
visual signals they so often put across.

(In Polgar & Swerissen 2000).

Let us analyse the text consistent with a pro-

cedure outlined in Daly et al (1997). First, let us
analyse the explicit content of the letter.

1.

Tone. Serious and condescending as that used
by authority figures such as teachers and magis-
trates; ‘. . . now, see here young man, this is for
your own benefit . . ." type of communication.

. Language. Moralistic (e.g. ‘dressed properly’,

‘going about half-naked’) and calling for responsi-
bility (‘compromising a little’). Also the language is
alarmist, predicting that men non-compliant to a
dress code will be assaulted.

. The aim. The explicit aim of the letter is to warn

young men of the dire consequences of dress-
ing immodestly and thereby inviting attention by
‘urge-driven women'.

. Repetition of ideas. The main idea seems to be that

a scantily dressed man is sexually provocative to
women. Another notion is that women are strug-
gling to control powerful sexual urges. It is implied
that men should accept responsibility for suppress-
ing these urges in women. If men dress immodestly
then they have to accept the consequences.

. Themes. The first basic explicit theme is the

importance of men taking responsibility in project-
ing a safe, chaste image. The second is the power
and danger of women’s sexual urges which can
explode into assault when provoked by scant-

ily dressed males. An underlying theme which

you might have detected is one of ‘blaming the
victim’; if men are assaulted it is their fault, they
should have been more careful.

. Oppositional elements. If men ignore the letter

writer's message and move towards the choice

of scanty dress then they are putting themselves
at risk. That is, modest dress means safety while
immodest dress means assault. Another dichot-
omy is gender: women are sexually powerful and
dangerous; men are presented as naive victims
lacking any defined sexuality. In different ways the
overt themes emerging from the text are demean-
ing of both males and females.

You may have different views about how best

to interpret the text. As Daly and her colleagues
(1997, p. 183) noted: ‘Let us now make some basic
semiotic moves across the data’. Let us interrogate
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the ‘data’ further using the six points suggested by
Daly et al (1997).

¢ |s the content of the letter preposterous? Are there
scantily dressed male construction workers being
dragged into alleys by out-of-control schoolgirls?
Are there gangs of libidinous females cruising
our streets with evil purposes on their minds?
Preposterous! The incidence of assault by women
is, to all intents and purposes, very low, regardless
of how men choose to dress. Therefore, the letter
is unsound or it may be a parody.

° In order to understand the meaning of the letter,
we play a language game as follows: read ‘male’
for ‘female’ in the text. The story now reads quite
differently; in fact it resembles a more usual story
told to women concerning their responsibility for
ensuring that men don't assault them.

¢ One might propose that the latent agenda for the
letter was to ridicule the notion that victims are
in some way responsible for the violence of the
perpetrator.

° The apparent hero of the explicit story was the
author, the caring woman dispensing advice to
young men to keep themselves safe by dressing
in a chaste fashion. In the implicit story the villains
are people who blame women for contributing to
violence simply by the clothes they wear.

¢ What is missing from the original story? Or what
was introduced? The writer introduced the notion
of female sexuality as an urge that could trans-
form at the slightest provocation into violence. If
this notion is ludicrous for females, the question
is, how can it be tenable for males? You might
ask that if the true intention of the author was
to denounce myths of male sexuality then why
didn’t she say so directly? This is like asking why
George Orwell wrote a fairy tale with talking farm
animals rather than a direct denouncement of
totalitarianism and Stalinist terror. It is a ques-
tion of how we use language; we use metaphors,
parables, hyperboles and so on for expressing
ourselves in an interesting, colourful fashion.
Semiotics is one of the ways for interpreting the
meanings that might be hidden or camouflaged in
the original narrative.

s A basic principle for semiotic analysis is select-
ing a theoretical framework in terms of which we
can deconstruct the original narrative and identify
its hidden, repressed or mystifying elements. The
key to the previous analysis was that the basic
idea underpinning the argument (that immodestly
dressed males are in danger of being assaulted
by out-of-control women) was false and absurd.



Our interpretation of the meaning is that the text is
a parody of the victim-blaming discourses in patr-
iarchal societies. By adopting a feminist theoreti-
cal framework we are in a position to identify the
hidden meaning of the text and infer the intentions
of the author.

° There is always the possibility that we have
misinterpreted the text and misrepresented the
intentions of the author. What if she was genuinely
concerned about the welfare of young men? The
fact of the matter is that there are no absolute
guarantees. It might be that, regardless of his
well-known interest in political affairs, George
Orwell was simply intending to create a children’s
story when he wrote Animal Farm.

In the next part of this chapter we will outline
some strategies for ensuring validity and reliability
for qualitative research.

The accuracy of qualitative
data analysis

How can we be sure that the themes we identified
in a text accurately reflect the actual views of the
participants? Also, how do we know that similar
themes would emerge from the reports of other
people who had similar experiences to our sample?
There are a number of qualitative researchers
who ensure that the collection and interpretation of
their evidence are carried out in a methodologically
rigorous fashion. The following represent some
of the key methodological criteria for conducting
qualitative research (Lincoln & Guba 1985):

1. Data saturation. This refers to ensuring that we
have collected sufficient data from our respond-
ents. Saturation occurs when the themes and
ideas emerging from the text become repetitive
and we are confident that the inclusion of new
participants or further engagement with cur-
rent participants will not lead to novel themes or
interpretations.

2. Credibility. Checking if the interpretation of the
evidence is judged as accurate by both the
research participants and also independent
clinicians or scholars. In other words, does your
interpretation make sense and if not, why not?

3. Auditability. This refers to each of the steps of the
research process being clearly described, so that
an independent scholar can critique the research

Summary

In-depth interviews

T~

Structured

Focus groups questionnaires

Figure 21.1 e Triangulation using different approaches to
data collection.

process from its beginning to the analysis and
interpretation of the data. The auditor confirms or
rejects the researcher’s methodology.

4. Triangulation. This strategy involves the use of
multiple independent methods for collecting
data and checking if the themes and interpret-
ations emerging from these different methods are
consistent and matching. For example, in order to
evaluate client satisfaction with a health service
you might use three different data collection strat-
egies (Fig. 21.1). It is useful (but not essential) to
use three different data collection methods. The
researcher might, if appropriate, use both qualita-
tive (e.g. in-depth interviews) and quantitative
(e.g. structured questionnaires) methods for data
collection. These are called ‘mixed’ designs (see
also Chs 1 and 9).

As you can see, the methodological concerns
in qualitative research are parallel to those of
quantitative research (i.e. reliability and validity).
However, because of the differences in the way
the two types of research are conducted, the ter-
minology for describing the methodological prin-
ciples is somewhat different.

Summary

There are different approaches to analysing quali-
tative data depending on the theoretical frame-
work and data collection strategies adopted by the
researchers. However, as we saw in this chapter,
there are several common aspects to qualitative
data analysis:

° ‘Immersion’ in the data; reading and re-reading

the texts to develop a sense of what it is that
respondents are trying to say.
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¢ Developing a coding system and identifying the
themes emerging from the text.

o Using these themes as a basis for insight, empa-
thy (verstehen) with the experiences, emotions
and thinking of the respondents.

° |nterpreting and theorizing the respondents’
experiences in the context of cultural or historical
settings.

° Ensuring the accuracy of the interpretations by
cross-checking themes and explanations with
other sources of data, other researchers’ interpret-
ations of the data, and the respondents.

Self-assessment

Qualitative data analysis

Explain the meaning of the following terms:

auditability

coding

coding and thematic analysis
content analysis

credibility

data saturation

grounded theory
hermeneutics

predetermined coding categories
semiotics

theme

theoretical framework
triangulation

verstehen

True or false

1. Hermeneutics refers to understanding meanings
in their cultural contexts.

2. Quantitative data analysis is a far more subject-
ive process than qualitative analysis.

3. Qualitative data analysis is a systematic way of
‘reading’ another person’s mental states.

4. In the context of qualitative data analysis, the
term ‘text’ refers to the transcripts of in-depth
interviews, focus groups, etc.

5. Predetermined coding is based on categories of
meaning emerging as the texts are analysed.

6. When coding and thematic analysis are car-
ried out together, it is essential to maintain the
first coding system chosen to avoid thematic
confusion.

7. Content analysis often employs statistical analy-
ses of the data.
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8. A basic objection to computer-assisted coding
and analysis is that this technique might obscure
more subtle meanings communicated by the
respondents.

9. ‘Verstehen’ is a German word referring to the
precise dictionary definitions of the words used
in a text.

10. A fundamental objective of qualitative data
analysis is to enable the researcher to see
heaith-related events from the perspectives of
the respondents.

11. A theme is a specific idea which reflects the
unique experiences of only one respondent.

12. Hermeneutics is a form of religious practice
requiring withdrawal from everyday life.

13. Semiotics requires the adoption of a theoretical
framework for identifying hidden meanings in a
text.

14. The results of a qualitative study represent expe-
riences which are useless unless they are true
for all times and places.

15. ‘Auditability’ refers to the clarity of the meth-
odology employed in conducting a qualitative
research project.

16. ‘Data saturation’ addresses an issue analogous
to external validity in quantitative research.

17. The results of quantitative and qualitative
research cannot be compared with each
other.

18. As there are no absolute guarantees for the
truth of our interpretation of other people’s
experiences, all qualitative research lacks
credibility.

19. Qualitative analyses produce evidence relevant
for constructing social theories, but have no
relevance to evidence-based health care.

20. In conducting evidence-based health care, we
should combine the results of qualitative and
quantitative research to identify the best practice
for our clients.

Multiple choice

1. Which of the following statements is not an

aspect of ‘intepretivist’ approaches?

a Society exists as the result of meaningful
social interactions.

b It is the actors themselves who are best able
to define social situations.

¢ A society is defined by the sum of the total
behaviours of individuals constituting a
population.



d Data collection requires a degree of empathy
with the way in which people experience their
social situation.

. Themes are:

a the planning process used by the researcher

b organized around interview data

¢ the result of the research question

d ideas represented in a pattern.

. A qualitative researcher could develop codes for
interview data:

a after conducting all of the interviews

b Dbefore collecting data

¢ both before and during data collection

d all of the above.

. Latent content of themes in qualitative data

refers to:

a the hidden or underlying themes

b the second level of data collection

¢ what was not said directly in the data

d bothaandc.

. Which of the following statements is true in cod-

ing data?

a Words, concepts and themes are selected.

b The researcher must wait until all data are
collected before establishing codes.

¢ Concepts are weighted as far more important
than themes.

d The researcher must be trained in using a
qualitative computer program.

. In a qualitative study of public perceptions of

people with mental illness, you intend to identify

the social significance of being perceived as

mentally ill. You are well aware that most of your

respondents will attempt to appear caring and

tolerant, even when they hold strong prejudices

against people with mental illness. A useful

approach for analysing the data in relation to the

above question is called:

a grounded theory

b semiotic analysis

¢ content analysis

d typological categorization.

. The term ‘grounded theory’ refers to:

a any sociological theory that is based on
empirical evidence

10.

11.

12.

Self-assessment |

b any theory, sociological or otherwise, that is
based on empirical evidence

¢ asystematic way of formulating theories
which are the sources for empirically testable
hypotheses

d generating and testing interpretive theories
during the course of data collection.

Generally, an interpretive theory aims to explain:

a the social causes of human action

b the experiences of people in the context of
their cultural settings

¢ why people do what they do

d the factors which interact in a society for
generating human personality.

The process of interpreting texts (such as the
Bible) in the cultural contexts in which they were
written is called:

a hermeneutics

b content analysis

¢ semiotics

d discourse analysis.

The term ‘data saturation’ as used in qualita-
tive research is most closely related to what in
quantitative research?

a Sample size.

b Validity of the evidence.

¢ Reliability of the evidence.

d ‘Scaling’ of the data (nominal, ordinal, etc.)
The term ‘triangulation’ as used in qualitative

research is most closely related to what in quan-
titative research?

a Reliability.

b Validity.

¢ Hypothesis testing.

d Descriptive data analysis.

Which of the following is not a traditional
approach to qualitative research?

a Ethnomethodology.

b Grounded theory.

¢ Phrenology.

d Phenomenology.
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Introduction

Knowledge in the health sciences is the sum of
the individual efforts of investigators working all
over the world. Professional journals in science
and health care provide the dominant medium for
disseminating information about the outcome of
specific investigations. Investigators must report
their procedures and results in an accurate and
complete fashion. In this chapter, we outline the
format and style generally followed for presenting
the results of empirical investigations.
The specific aims of this chapter are to:

1. Describe the conventional way in which quantita-
tive research is presented for publication.

2. Discuss the style or language used to describe
research.

3. Outline briefly the way in which research papers
are selected for publication.

The structure of research
publications

The format of a professional publication report-
ing empirical research reflects the stages of the
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Table 22,1 Format of research publications and the research
process
SrEET L

Title
Abstract
Introduction Research planning
Method: Design
Subjects
Apparatus Measurement
Procedure
Results Descriptive statistics
Inferential statistics
Discussion Interpretation of the data
References
Appendices

research process discussed in this book. Table 21.1
represents the relationship between the stages
of research and the commonly used publication
format. This format is generally used to report
quantitative empirical research, although you
will find that some variations on this theme are
adopted by some professional journals. This for-
mat is not necessarily followed for certain types
of scholarly communications, such as for quali-
tative research, theoretical papers or literature
reviews. In the subsections following, we exam-
ine in detail each of the components of a research
report shown in Table 21.1.

Title and abstract

The title is a descriptive sentence stating the
exact topic of the report. Many titles of research
reports take one of the following two forms:

y as a function of x
the effect of x upon y.

In causal research, such as experiments, y
refers to the dependent variable being measured
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and x refers to the independent variable being
manipulated. For example:

The incidence of alcoholism in health profession-
als as a function of work-related stress.

The effect of major tranquillizers on the cognitive
functioning of persons with schizophrenia.

For descriptive or qualitative research the title
should inform the reader about the groups being
studied and the characteristics being reported,
for example: ‘The attitudes of physicians to the
professional functions of podiatrists’. In general,
titles should be concise and informative, enabling
a prospective reader to identify the nature of the
investigation. Immediately below the title should
appear the name(s) of the investigator(s) and
affiliation.

The abstract is a short (not more than 250
words) description of the entire report. The pur-
pose of this section is to provide the reader with a
general overview of the communication. It should
provide enough details to enable the reader to
decide whether or not the article is of interest.
This section can be difficult to write because of
its precise nature. When writing an abstract you
should include:

1. A brief statement about previous findings which
led you to conduct your own research.
2. The hypothesis and/or aim of your research.

3. Methods, including subjects, apparatus and
procedure.

4. A short description of what you found and how
you interpreted your results.
5. What you concluded.

In some journals, this section may appear at the
end of the manuscript in the form of a summary.
For our purposes, however, we will treat this sec-
tion as an abstract.

The title and the abstract together are import-
ant and should contain key words that enable the
efficient retrieval of the information.

Introduction

The introduction is equivalent to the planning
stages of research, discussed in Section 2. A good
introduction will set the stage for the hypotheses
being tested. It should do this by discussing the
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theoretical background of the problem under con-
sideration and evaluating the relevant research
done previously. The introduction thus serves as a
link between the past and the present.

Generally, all aspects of the literature cannot
be covered in a relatively brief research paper,
therefore the review of past research is done with
a bias towards only those aspects of the prob-
lem which are of direct relevance to your report.
In this way the hypotheses being tested can be
derived in a logical manner. For this reason, a good
introduction starts out by making a few general
statements about the field of research, leading
logically to a narrow and specific set of statements
which represent the aims or hypotheses. The final
paragraph of the introduction should state the
precise aims or the hypotheses being investigated.

Method

The purpose of the method section is to inform
the reader of how the investigation was carried
out. It is important to remember that the method
section should contain enough detail to enable
another researcher to replicate your investigation.
(Of course, replications may not be feasible for
a unique event, such as a case study of a specific
individual.) Conventionally, three subsections are
used: subjects, apparatus and procedure.

o Subjects. Three questions must be answered
concerning the subjects: who were they, how
many were there and how were they selected?
Specific information must be given concerning
the subjects, as results may vary from one
sample to another.

° Apparatus. A description of all equipment,
including questionnaires, etc., used in the
research must be provided. If it is commercially
available, provide the reader with the manufac-
turer’s name and the commercial identification of
the equipment. Alternatively, if the equipment was
privately made, provide the reader with enough
information to allow replication. Measurements
and perhaps a diagram will be necessary.

° Procedure. Once again, this section should
provide enough information for other research-
ers to replicate the investigation. Details of how
the research was carried out should include how
subjects were assigned to groups, how many

subjects per group, the experimental procedure
and a description of how the data were collected.

In a sense, the method section should read like
a cookbook. The ‘subjects’ subsection describes the
ingredients. The ‘apparatus’ subsection describes
the equipment necessary for baking (note we did
not say ‘cooking’ the experiment) and, finally, the
‘procedure’ subsection describes how the ingredi-
ents were mixed to produce the final outcome: the
results section.

Results

The results section presents the findings of the
investigation and draws attention to points of
interest. Raw data and statistical calculations are
not presented in this section. Rather, we use the
principles of descriptive and inferential statistics
to present the summarized and analysed data:
graphs, tables and the outcomes of statistical tests
are presented in this section. It is essential that all
the findings are presented and that the graphs and
tables are correctly identified.

Discussion

The discussion section restates the aim(s) of the
investigation and discusses your results with ref-
erence to the aims or experimental hypothesis
stated in the introduction. Did you find what you
expected? How do the present results relate to
previous research?

It is important to remember that one experi-
ment in isolation cannot make or break a theory or
establish the effectiveness of a practice. Thus, the
discussion should connect the findings with similar
studies and especially with the theory underlying
such studies. If unexpected results were obtained,
possible reasons for the outcome (such as faulty
design and controls) should be discussed. By this,
the discussion will point the way to further prob-
lems which remain to be solved. Unconstructive,
negative or unimportant criticism should be
avoided, so that the report does not end with long
discussions of possible reasons for the outcome.
Brief, concise discussion is more appropriate.

In the conclusion, which is usually the last para-
graph of the discussion section, the main findings
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are summarized and suggestions made for further
research. For example, you may have demon-
strated certain phenomena which may have impli-
cations for explaining broader concepts which can
be empirically tested. You are therefore taking
your findings and generalizing them to phenomena
not directly tested in the present research.

References and appendices

It is expected that all the literature discussed in the
paper is listed in the references section. This enables
your reader to evaluate your sources. You should
refer to appropriate style manuals for informa-
tion on how references should be listed. Sufficient
information must be provided for an interested
reader to be able to identify and retrieve the
sources. In addition, a report may include labelled
appendices. These might include a full description
of questionnaires or other measuring instruments,
raw data or statistical calculations if required.

The style of research
publications

It is essential that you read research publications
in your professional area to gain a ‘feel’ for the
appropriate style of writing. In general, the fol-
lowing points should be kept in mind when writ-
ing reports:

1. Avoid long phrases or complicated sentences.
Short, simple sentences are far more easily
understood by your reader. In other words, try
not to posture but to communicate.

2. Use quotations sparingly; put ideas in your own
words. Quotations are only used when it is
necessary to convey precisely the ideas of
another researcher, for instance while conducting
a critique of a paper.

3. Use past tense when writing your research report.

4. Use an objective style, avoiding personal
pronouns wherever possible.

5. Make sure you are writing to your audience; if
the material is specialized or difficult, explain it
clearly.

6. Make sure that you are concise and clear; do
not introduce issues and concepts which are not
strictly relevant to reporting your investigation.
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Raising interesting but superfluous issues might
distract and confuse your reader.

In general, you should aim to improve your
report writing and your ability to communicate
your findings and ideas by seeking constructive
criticism from your colleagues and supervisors.

The publication process

The formal knowledge representing the empirical
and professional basis for your professional practice
is in large part stored in journals, books and confer-
ence reports. Journals are published by appropriate
professional associations, government departments
or private companies. Having completed a research
project, how does one publish it in a professional
journal? After all, the value of research is negligible
if it is not made public.
In general, the prospective author will:

1. Select a professional or scientific journal
appropriate for the material.

2. Present the research report in a format required
by the journal.

3. Send the completed manuscript to the journal’s
editor.

The editor is generally a person of high stand-
ing in a given scientific or professional area. If the
article is judged as being appropriate for the jour-
nal, the editor will send the article to two or more
referees and, on the basis of the referees’ reports,
publish or reject the manuscript. Sometimes the
referees recommend certain additions or changes
which have to be made by the author before the
manuscript is judged to be publishable.

Therefore, when you read research publica-
tions in refereed journals, you can be confident
that the articles have been scrutinized by experts.
However, as shown in the next subsection, this
does not necessarily guarantee the truth of either
the evidence or the conclusions.

Ethics of presenting research

The health science researcher has an obligation
to publish honest and accurate results that would



not harm those people who participated in the
research.

Most ethics committees in health care institu-
tions and universities have the twin objectives of
not only advancing knowledge for the common
good but also preventing harm to those partici-
pating in the research. This is particularly so in
the situation where the participants may have a
diminished capacity to consent freely to their
involvement (e.g. children or people who are
unconscious or seriously ill). It is crucial to main-
tain the dignity and confidentiality of participants
in health research.

Therefore, in the process of ethical evaluation of
health science research, the researcher can expect
to be closely questioned on these issues. If the
researcher cannot convince the ethics committee
that the research will deliver knowledge for
the common good and that it will not harm the
participants, then the research will not usually
proceed.

In research performed for a higher degree,
many universities will not accept a thesis with-
out an accompanying ethical clearance from the
relevant ethics committee. Most hospitals and
universities have strict ethical procedures that
must be followed before any research work is
commenced by their staff. Most, if not all, health
research grant bodies require an ethical clearance
before they will release the funds to successful
applicants. Many journals also require certifica-
tion from the researcher that the work complies
with ethical principles. It is likely that this trend
towards tightening of procedures will continue.

The ultimate unethical act is to manufac-
ture data. Broad & Wade (1982), in their book
Betrayers of the Truth, describe this problem. It
would seem to be a growing problem that may
be associated with the ‘publish or perish’ require-
ments placed upon health science researchers by
granting bodies and employers.

In the health sciences, it is not only the partici-
pants in research who may be harmed or assisted
by the research. If an erroneous research finding
is widely applied, it may harm many thousands of
people. Ethics are therefore not simply concerned
with whether the researcher has good intentions
and treats the research participants well; there

Self-assessment

is also the issue of competence. Poorly designed
research is unethical in that it may bring great
harm to others. Thus, the ethical researcher must
also be a competent researcher.

Summary

In this chapter we outlined the general format fol-
lowed by researchers for publishing their results.
The format is related to the logical steps of plan-
ning, conducting and interpreting research. The
style involves clarity, accuracy and sufficient com-
pleteness for colleagues to understand or repli-
cate the research project. Research is published in
journals, which are generally edited by persons of
high standing in the field. Every effort is made by
editors to ensure the validity of the research pub-
lished in their journals. The individual researcher
is also ethically bound to report findings in an
unbiased and truthful fashion.

Although the format and style outlined in this
chapter might seem rather arduous, poor presen-
tation may destroy the intrinsic value of a research
project.

Self-assessment

Explain the meaning of the following terms:

abstract
apparatus
discussion
method
plagiarism
procedure
refereed journal
subjects

True or false

1. As arule, the title of a research investigation
should not contain more than seven words.

2. Generally, the research hypothesis should be
presented in the introduction.

3. Aresearch report should contain sufficient
information so that the investigation can be
replicated.
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10.

11.

12,
13.

14.

15.

16.

17.

18.

19.

The results section should contain all computa-
tional details for each statistic.

The abstract should normally contain the key
tables of the results.

The design of an investigation influences the
content of the method section.

. Ali the names and addresses of your subjects

must be published to enable replication of your
investigation.

Quotations should be used sparingly in a
research report.

A research report should be written in the past
tense.

The outcomes of statistical analyses are
reported in the results section.

Scientists do not normally report the results of
their investigations, in case their work is stolen
or misrepresented.

Calculations are best presented in appendices.
The ‘referees’ are hired by the investigator in
order to convince the editor that an investigation
should be published.

The role of an editor for a scientific journal is to
censor research publications for pornographic,
blasphemous or politically undesirable
material.

Good research is unique and cannot be
replicated.

A researcher should report data even ifiit is
inconsistent with the researcher’s original
preconceptions.

Scientific and professional journals are important
for disseminating and storing knowledge.
Fortunately, there have been no major scandals
concerning scientists publishing fabricated data.
Provided that the results are statistically sig-
nificant, there is no need to present descriptive
statistics.

Multiple choice

1.

Scientific journals:

a only publish empirical evidence

b depend on the services of referees to com-
ment on the validity of the research project

¢ publish only true knowledge

d bandc.

The literature review is normally found in which

section of a research report?

a Abstract.

b Introduction.
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¢ Discussion.
d References.

. A literature review for a research report should:

a contain a detailed review of all previously
published reports

b contain a selective review of evidence
pertinent to the current research project

¢ be at least 5000 words

d aandc

e bandc.

. Which of the following is most inadequate as a

title for a research report?

a The effects of the twentieth century
culture on being human: an empirical
evaluation of personal functioning in declining
cultures.

b Electrical stimulation of the limbic system:
effects on emotion and memory.

¢ A survey of the incidence of mental illness in
the London metropolitan area.

d Popularity, friendship selection and specific
peer interaction among children.

The methods section of a research report:

a informs the reader of the purpose of an
investigation

b informs the reader about the state of meth-
odological advances in the subject area

¢ informs the reader as to how the investigation
was carried out

d informs the reader as to how the hypothesis
or aim of the investigation was formulated.

. When writing a scientific report one should:

a make sure the introduction contains 250
words or less
b use personal pronouns as much as possible

¢ try to impress the readers by one’s level of
general knowledge

d use the past tense.
In which part of a research report are the

descriptive and inferential statistics normally
reported?

a Abstract.

b Resuits.

¢ Discussion.

d Appendices.

In writing a discussion, one should:

a relate the results to findings reported in
previous publications

b establish if the results of the investigation
supported the hypothesis



Self assessment

¢ neithera norb 10. Which of the following statements is false?
d botha and b. a The abstract should be a brief summary of
. Which of the following statements is true? the research.
a The discussion section should relate present b Itis unethical to fabricate data.
findings to previous research. ¢ Arefereed journal is one in which experts
b The literature review should be conducted in independently evaluate a research report
a special appendix labelled ‘references’. before it is published.
¢ The results section should contain only tables d A well-designed research project need not
and graphs, but not any verbal descriptions of have a procedure section.
the data.

d All the above statements are true.
e None of the above statements are true.
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Introduction

By the time a research report is published in a
refereed journal, it has been critically scrutinized
by several experts and, usually, changes have been
made to the initial text by the author(s) to respond
to the referees’ comments. Nevertheless, even this
thorough evaluation procedure doesn’t necessarily
guarantee the validity of the design or the conclu-
sions presented in a published paper. Ultimately,
you as a health professional must be responsi-
ble for judging the validity and relevance of pub-
lished material to your own clinical activities. The
evidence-based practice movement focuses on the
ways in which practitioners can incorporate better
procedures into their practice based upon well-
founded research and evaluation evidence. The
systematic review processes employed by bodies
such as the Cochrane and Campbell Collaborations
are intended to assist clinicians in the selection of
interventions that are well proven (Ch. 24).

The proper attitude to take with published
material, including systematic reviews, is hard-
nosed scepticism, notwithstanding the authority
of the source. This attitude is based on our under-
standing of the uncertain and provisional nature of
scientific and professional knowledge. In addition,
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health researchers deal with the investigation of
complex phenomena, where it is often impossible
for ethical reasons to exercise the desired levels of
control or to collect crucial information required
to arrive at definitive conclusions. The aim of crit-
ical evaluation is to identify the strengths and weak-
nesses of a research publication, so as to ensure that
patients receive assessment and treatment based
on the best available evidence.

The aim of this chapter is to demonstrate how
select concepts in research design, analysis and
measurement can be applied to the critical evalu-
ation of published research. The chapter is organ-
ized around the evaluation of specific sections of
research publications.

The specific aims of this chapter are to:

1. Examine the criteria used for the critical evalu-
ation of a research paper.

2. Discuss the implications of identifying problems in
design and analysis in a given publication.

3. Outline briefly strategies for summarizing and
analysing evidence from a set of papers.

4. Discuss the implications of critical evaluation of
research for health care practices.

Critical evaluation of the
introduction

The introduction of a paper essentially reflects the
planning of the research. Inadequacies in this sec-
tion might signal that the research project was erro-
neously conceived or poorly planned. The following
issues are essential for evaluating this section.

Adequacy of the literature review

The literature review must be sufficiently complete
so as to reflect the current state of knowledge in
the area. Key papers should not be omitted, par-
ticularly when their results could have direct
relevance to the research hypotheses or aims.
Researchers must be unbiased in presenting evi-
dence that is unfavourable to their personal points
of view. This is why we now have systematic review
procedures, such as those utilized by the Cochrane
Collaboration, so as to avoid inappropriate and
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biased exclusion or inclusion of work that sup-
ports or challenges a point of view favoured by the
researcher or other researchers who hold contrary
opinions. Poor review of the literature could lead
to the unfortunate situation of repeating research
or making mistakes that could have been avoided if
the previous work’s findings had been incorporated
into formulation of the research design.

Clearly defined aims or hypotheses

As stated in Chapter 2, the aims or hypotheses of
the research should be clearly stated. If this clar-
ity in expression of the aims is lacking, then the
rest of the paper will be compromised. In a quan-
titative research project, it is usual to see a state-
ment of the hypotheses as well as the research
aims. All research, whether qualitative or quanti-
tative, should have a clear and recognizable state-
ment of aim(s).

Selection of an appropriate
research strategy

In formulating the aims of the investigation, the
researcher must have taken into account the
appropriate research strategy. For instance, if
the demonstration of causal effects is required,
a survey may be inappropriate for satisfying the
aims of the research. If the purpose of the study is
to explore the personal interpretations and mean-
ings of participants then a qualitative strategy will
be best. Some researchers now advocate mixed
designs where multiple studies are performed to
examine different perspectives of the same issues.
Thus in a study of views concerning health prac-
tices, a focus group discussion may also be accom-
panied by a structured questionnaire even within
the same study sample, so that the findings from
each may be used to inform the total understand-
ing of the research issue(s) under study.

Selection of appropriate variables/
information to be collected
In a quantitative study, if the selection of the

variables is inappropriate to the aims or questions
being investigated, then the investigation will not



Critical evaluation of the methods section

produce useful results. Similarly, in a qualitative
study, the information to be collected must be
appropriate to the research aims and questions.

Critical evaluation of the
methods section

A well-documented methods section is a neces-
sary condition for understanding, evaluating and
perhaps replicating a research project. In general,
the critical evaluation of this section will allow a
judgment of the validity of the investigation to
be made.

Research subjects/participants

This section shows if the study participants were
representative of the intended target group or
population and the adequacy of the sampling
model used.

Sampling model used

In Chapter 3, we outlined a number of sampling
models that can be employed to optimize the
representativeness of a study sample. If the sam-
pling model is inappropriate, then the sample
might be unrepresentative, raising questions
concerning the external validity of the research
findings. In qualitative research, although the par-
ticipant sampling method may be less formal than
in a quantitative study, the issue of participant
representativeness is still pertinent in terms of
being able to apply the results more broadly.

Sample size/number of participants

Use of a small sample is not necessarily a fatal flaw
of an investigation, if the sample is representative.
However, given a highly variable, heterogeneous
population, a small sample will not be adequate
to ensure representativeness (Ch. 3). Also, a small
sample size could decrease the power of the stat-
istical analysis in a quantitative study (Ch. 20).
As discussed in the qualitative sampling section of
this text, unlike in quantitative sampling proce-
dures, there is not widespread agreement among
qualitative researchers as to the issue of how many
participants are needed in such studies.

Description of the study participants

A clear description of key participant character-
istics (for example age, sex, type and severity of
their condition) should be provided. When nec-
essary and possible, demographic information
concerning the population from which the partici-
pants have been drawn should be provided. If not,
the reader cannot adequately judge the represent-
ativeness of the sample.

Instruments/apparatus/tools

The validity and reliability of observations and/or
measurements are fundamental characteristics
of good research. In this section, the investigator
must demonstrate the adequacy of the tools used
for the data collection.

Validity and reliability

The investigator should use standardized tools, or
establish the validity and reliability of new tools
used. A lack of proven validity and reliability will
raise questions about the adequacy of the research
findings.

Description of tools

A full description of the structure and use of
novel tools should be presented so that they can
be replicated by independent parties.

Procedure

A full description of how the investigation was
carried out is required for both replication and for
the evaluation of its internal and external validity.
This requirement applies to both qualitative and
quantitative studies.

Adequacy of the design

It was stated previously that a good design should
minimize alternative conflicting interpretations
of the data collected. For quantitative research
aimed at studying causal relationships, poor design
will result in uncontrolled influences by extra-
neous variables, muddying the identification of
causal effects. In Section 3, we looked at a variety
of threats to internal validity which must be con-
sidered when critically evaluating an investigation.
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In a qualitative study the theoretical approach
taken in the study design or approach should be
clearly stated.

Control groups

In quantitative research a common way of con-
trolling for extraneous effects is the use of control
groups (such as placebo, no treatment, conventional
treatment). If control groups are not employed,
then the internal validity of the investigation might
be questioned. Also, if placebo or untreated groups
are not present, the size of the effect due to the
treatments might be difficult to estimate.

Subject assignment

When using an experimental design, care must be
taken in the assignment of subjects so as to avoid
significant initial differences between treatment
groups. Even when quasi-experimental or natu-
ral comparison strategies are used, care must be
taken to establish the equivalence of the groups.

Treatment parameters

It is important to describe all the treatments
given to the different groups. If the treatments
differ in intensity, or the administering personnel
take different approaches, the internal validity of
the project is threatened. The adherence of the
study in the delivery of the intervention to the
intended intervention is sometimes called treat-
ment fidelity.

Rosenthal and Hawthorne effects

Whenever possible, intervention studies should
use double- or single-blind procedures. If the
participants, researchers or observers are aware
of the aims and predicted outcomes of the inves-
tigation, then the validity of the investigation
will be threatened through bias and expectancy
effects. In qualitative research, it is very impor-
tant that the research findings are not unduly
influenced by the personal positions of the
researchers in a way that obscures the meanings
and interpretations of the research participants.
Of course, the position of the researcher in any
study, whether qualitative or quantitative, will to
some extent influence the findings but this needs
to be kept to a minimum.
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Settings

The setting in which a study is carried out has
implications for external (ecological) validity. An
adequate description of the setting is necessary for
evaluating the generalizability of the findings. The
context of the investigation may have important
effects on the study outcomes. Research conducted
in the investigator’s lab or office may yield different
results to the same work conducted in the field.

Times of treatments and observations

In intervention studies the sequence of any treat-
ments and observations must be clearly indicated,
so that issues such as series and confounding
effects can be detected. Identification of vari-
ability in treatment and observation times can
influence the internal validity of experimental,
quasi-experimental or n = 1 designs, resulting in,
for instance, internal validity problems.

Critical evaluation of the results

The results should represent a sound and, where
appropriate, statistically correct summary and
analysis of the data. Inadequacies in this section
could indicate that inferences drawn by the inves-
tigator were erroneous.

Tables and graphs

Data should be correctly tabulated or drawn and
adequately labelled for interpretation. Complete
summaries of all the relevant findings should be
presented.

Selection of statistics

Where appropriate both descriptive and inferen-
tial statistics must be selected according to spe-
cific rules. The selection of inappropriate statistics
could distort the findings and lead to inappropri-
ate inferences.

Calculation of statistics

Clearly, both descriptive and inferential statistics
must be correctly calculated. The use of comput-
ers generally ensures this, although some atten-
tion must be paid to gross errors when evaluating
the data presented.
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Methods of qualitative analysis

The methods chosen must complement the theor-
etical approach taken in the study and be per-
formed according to the specified protocols.

Critical evaluation of the
discussion

In the discussion, investigators draw infer-
ences from the information or data they have col-
lected in relation to the initial aims, questions,
and/or hypotheses of the investigation. Unless
the inferences are correctly made, the conclusions
drawn might lead to useless and dangerous treat-
ments being offered to clients.

Drawing correct inferences from the collected
information/data

The inferences from the collected information or
data must take into account the limitations of the
study and the analytical methods used to analyse
them. In the quantitative domain we have seen,
for instance in Chapter 16, that correlations do
not necessarily imply causation, or that a lack of
significance in the statistical analysis could imply
a Type 11 error or incorrect missing of a real trend
or finding (see Ch. 20). In the qualitative domain,
the findings must follow reasonably from the
information collected in the investigation accord-
ing to the paradigm used.

Logically correct interpretations of the findings
Interpretations of the findings must follow from
the information collected, without extraneous
evidence being introduced. For instance, if the
investigation used a single-participant design, the
conclusions should not claim that a procedure is
generally useful for the entire population.

Research protocol deviations

In interpreting the data or information collected
in a study, the investigator must indicate, and
take into account, unexpected deviations from
the intended research protocols. For instance, in a
quantitative study a placebo/active treatment code
might be broken, or ‘contamination’ between con-
trol and experimental groups might be discovered.

In a qualitative study, it could be that partici-
pants have conversed with each other about the
research prior to one of the participants complet-
ing participation. If such deviations are discovered
by investigators they are obliged to report these,
so that the implications for the results might be
taken into account.

Generalization from the findings

Strictly speaking, the data obtained from a given
sample are generalizable only to the population
from which the participants were drawn. This
point is sometimes ignored by investigators and
the findings are generalized to subjects or situ-
ations which were not considered in the original
sampling plan. Qualitative researchers may vary in
their willingness to claim generalizability of their
findings outside the actual research participants
but this must also be systematically considered.

Statistical and clinical significance

As was explained in Chapter 22, in quantitative
studies, obtaining statistical significance does not
necessarily imply that the results of an investiga-
tion are clinically applicable or useful. In decid-
ing on clinical significance, factors such as the size
of the effect, side effects and cost-effectiveness,
as well as value judgments concerning outcome,
must be considered.

Theoretical significance

It is necessary to relate the results of an inves-
tigation to previous relevant findings that have
been identified in the literature review. Unless
the results are logically related to the literature,
the theoretical significance of the investigation
remains unclear. The processes involved in com-
paring the findings of a set of related papers are
introduced in the next subsection.

Table 23.1 summarizes some of the potential
problems, and their implications, which might
emerge in the context-critical evaluation of an
investigation. A point which must be kept in mind
is that, even where an investigation is flawed, use-
ful knowledge might be drawn from it. The aim
of critical analysis is not to discredit or tear down
published work, but to ensure that the reader
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Table 23.1 Checklist for evaluating published research

Problems which

—_

(0O 00 =~ OO OO A~ w

10.

11.
12.

13.

14

15.
16.

17.

18.

19.
20.

21.
22.
23.
24,

might be identified

. Inadequate literature review

. Vague aims or hypotheses

. Inappropriate research strategy

. Inappropriate variables selected

. Inadequate sampling method

. Inadequate sample size

. Inadequate description of sample

. Instruments lack validity or reliability

. Inadequate design

Lack of adequate control groups

Biased subject assignment

Variations or lack of control of
treatment parameters

Observer bias not controlled
(Rosenthal effects)

Subject expectations not controlled
(Hawthorne effects)

Research carried out in inappropriate setting

Confounding of times at which observations
and treatments are carried out

Inadequate presentation of
descriptive statistics

Inappropriate statistics used to describe
and/or analyse data

Erroneous calculation of statistics

Drawing incorrect inferences from the
data analysis (e.g. Type |l error)

Protocol deviations
Over-generalization of findings
Confusing statistical and clinical significance

Findings not logically related to previous
research findings
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SSIDle Implications In a research article

Misrepresentation of the conceptual basis for the research

Research might lack direction; interpretation of evidence might be
ambiguous

Findings might not be relevant to the problem being investigated
Measurements might not be related to concepts being investigated
Sample might be biased; investigation could lack external validity

Sample might be biased; statistical analysis might lack power

Application of findings to specific groups or individuals might be difficult

Findings might represent measurement errors

Investigation might lack internal validity; i.e. outcomes might be due to
uncontrolled extraneous variables

Investigation might lack internal validity; size of the effect difficult to
estimate

Investigation might lack internal validity
Investigation might lack internal validity

Investigation might lack internal and external validity
Investigation might lack internal and external validity

Investigation might lack ecological validity

Possible series effects; investigation might lack internal validity
The nature of the empirical findings might not be comprehensible
Distortion of the decision process; false inferences might be drawn

False inferences might be drawn

False conclusions might be made concerning the outcome of an
investigation

Investigation might lack external or internal validity
External validity might be threatened
Treatments lacking clinical usefulness might be encouraged

Theoretical significance of the investigation remains doubtful



understands its implications and limitations with
respect to theory and practice.

Summary

The critical evaluation of published material at a
level of detail suggested by this chapter can be a
time-consuming, even pedantic, task. One under-
takes such detailed analysis only when profes-
sional communications are of key importance, for
example, when writing a formal literature review
or when evaluating current evidence for adopting
a new intervention or approach. Nevertheless, it
is a necessary process for an in-depth understand-
ing of the empirical and theoretical basis of your
clinical practice.

Even when some problems are identified with
a given research report, it is nevertheless likely
that the report will provide some useful addi-
tional knowledge. Given the problems of gener-
alization, an individual research project is usually
insufficient for firmly deciding upon the truth of
a hypothesis or the usefulness of a clinical inter-
vention. Rather, as we will see in Chapter 24, the
reader needs to scrutinize the range of relevant
research and summarize the evidence using quali-
tative and quantitative review methods. In this
way, individual research results can be evaluated
in the context of the research area. Disagreements
or controversies are ultimately useful for generat-
ing hypotheses for guiding new research and for
advancing theory and practice.

Self-assessment

Explain the meaning of the following terms:

critical evaluation
protocol deviation

True or false

1. Critical analysis of a publication aims to iden-
tify the internal and external validity of the
investigation.

2. If an investigation is published in a reputable
journal by established investigators then the

Self-assessment

validity of the investigation can be taken for
granted.

3. Random assignment of subjects to treatment
groups ensures that the investigation uncovers
causal effects.

4. The outcome of an investigation can be useful
even with a small sample size.

5. If an investigation produces statistically sig-
nificant results, its design must have been
adequate.

6. Obtaining statistical significance in an investiga-
tion is a condition for the demonstration of the
clinical significance of a quantitative study.

7. The replication of an investigation demonstrates
the internal validity of the original investigation.

8. Without adequate controls the size of an effect
might be difficult to estimate.

9. If a study is internally valid, the investigator is
justified in generalizing the results to any other
population. _

10. Provided that the outcomes are statistically sig-
nificant, it doesn’t matter which statistical tests
were chosen to analyse the data.

11. If the design of an investigation is inadequate,
none of the empirical findings are of scientific or
clinical use.

12. Controversies in an area of science usually
reflect the presence of fraudulently published
evidence.

13. One of the problems with using human subjects
for research is the expectations of the subjects
concerning the purpose of the investigation.

14. Even poorly planned research can provide some
useful results.

15. The application of the scientific method ensures
the validity of a researcher’s conclusions.

16. Disagreements among researchers in an area are
useful for generating new hypotheses.

Multiple choice

1. The aim of the critical analysis of a publication

is to:

a identify the relevance of the results for clinical
practice

b identify the internal and external validity of the
investigation

¢ identify and attack incompetent researchers
in one’s area of interest

d aandb.
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2. If the internal validity of a study is adequate,
then:

a the results will be statistically significant

b the results will be clinically useful

¢ the investigation may demonstrate causal
effects

d aandb.

3. Say that an investigation has generated some
interesting findings. However, you find that the
investigators selected an inappropriate statistical
test to analyse their findings. You should:

a regretfully discard the study as useless

b re-analyse the data from the descriptive statis-
tics provided

¢ write to the investigators for their raw data,
and re-analyse yourself

d borc.

4. The reason one should evaluate the ‘literature’
as a whole is to:

a identify general patterns of findings in the area

b condense results from related papers into a
single statistic

c identify and attempt to explain controversies
in the area

d all of the above.

5. In judging the clinical significance of a well-
designed investigation one should consider:
a the cost-effectiveness of the interventions
b the size of the therapeutic effects

¢ the possible undesirable side effects of the
treatment

d all of the above.

An investigation was carried out in order to show
that ‘prepared childbirth’ was an effective method for
reducing pain during delivery. Ninety women attend-
ing a large hospital constituted the sample. Sixty
of the women chose to participate in childbirth

Women with no training (n = 30) 38
Women with childbirth preparation (n = 60) 32

(The difference was statistically
significant at o = 0.05)
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preparation, based on the Lamaze method, provided by
trained instructors working at the hospital. This method
encourages ‘natural’ (drug-free) childbirth through
teaching physical and mental strategies for coping
with pain or discomfort occurring during childbirth.
The other 30 women chose not to attend the childbirth
preparation programme. The level of pain experienced
was assessed on the McGill Pain Questionnaire,
which has been shown to be a valid and reliable inter-
val scale for pain. It was administered following the
childbirth. In addition the number of women seeking
analgesia during childbirth was recorded as a meas-
ure of levels of discomfort experienced. The results
for the investigation are as shown in the table below.

Questions 6-14 refer to the above investigation.

6. The strategy for the investigation is best
described as:

a an experiment

b a quasi-experiment
¢ a correlational study
d ann = 90 design.

7. One of the problems with the above investiga-
tion was that:
a the subjects could not be randomly assigned
to treatment groups

b the dependent variable was irrelevant to
the aims

¢ basic ethical issues were not
considered

d the instructors teaching the Lamaze method
were incompetent.

8. From the information given above, it is clear that
the investigators controlled for:
a Hawthorne effects
b Rosenthal effects
¢ subject assignment
d none of the above.

B

24

49

(The difference was not statistically
significant at o« = 0.05)



10.

1.

12.

If you wanted to calculate the proportion of
women with no training who had greater McGill
pain scores than women with childbirth prepar-
ation, then the required statistics are:

a the distribution of t forn = 98

b the normal distribution

¢ the indices for reliability and validity

d the standard deviations for the two groups.
Which of the following statistical tests is most

appropriate for analysing the significance of the
data for the McGill pain scores?
a Mann-Whitney U
b Sign test
¢ ztest for two means
d x2test.
Which of the following statistical tests is most
appropriate for analysing the significance of the
data for women requiring medication?
a Mann-Whitney U
b Sign test
c ttest for two means
d x®test.
The lack of statistical significance for the data on
medication implies that:
a the power for the test may have been
too low

13.

14.

Self-assessment

b equal sample sizes should have been used
¢ training has no effect
d bothaandc.

The outcome of this investigation can be gener-

alized to:

a women having children and undergoing
Lamaze training

b women having children without Lamaze
training

¢ women who choose the type of childbirth
they undergo

d none of the above groups.

Considering the evidence provided, one con-

cludes that:

a prepared childbirth is a waste of time

b there is evidence that Lamaze preparation at
this hospital results in statistically significant
reductions in pain during delivery

¢ women undergoing childbirth find Lamaze
preparation useless at this hospital

d aandc.
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Introduction

The research papers published in scientific and pro-
fessional peer-reviewed journals contain the basic
information currently available for understanding
the causes and consequences of health problems.
Each research publication contributes to the overall
knowledge regarding a health problem. However,
given the problems of generalization, an individual
research project is usually insufficient for firmly
deciding the truth of a hypothesis or the efficacy of
a clinical intervention. In order to understand the
progress of a research programme (Ch. 1) we need
to compare, contrast and synthesize the results of
related research papers. Consistent results across
diverse research reports are the most appropriate
bases for justifying the delivery of health services.
The term literature refers to the set of publica-
tions containing the network of theories, hypoth-
eses, practices and evidence representing the
current state of knowledge in a specific area of
the health sciences. A literature review contains
both the critical evaluation of the individual pub-
lications and the identification of emergent trends
and patterns of evidence. The literature review is a
synthesis of the available knowledge in an area and
therefore constitutes the strongest foundations for
initiating further advances in theory and practice.
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The overall aim of this chapter is to outline the
basic strategies used for synthesizing evidence and
producing a literature review.

The specific aims of the chapter are to:

1. Identify the basic methodological principles rele-
vant to writing a health sciences review.

2. Describe the process for conducting a systematic
review.

3. Explain how to interpret the findings of a pub-
lished meta-analysis.

4. Explain the uses and limitations of systematic
reviews and meta-analyses.

Basic principles

The first thing to consider is that writing a litera-
ture review is a demanding intellectual challenge.
The facts do not ‘speak’ for themselves. Rather, the
evidence has to be extracted, critically evaluated,
organized and synthesized into a logical, coher-
ent representation of the current state of knowl-
edge. For example, consider the review by Olanow
(2004) tilted ‘The scientific basis for the current
treatment of Parkinson’s disease’. This relatively
brief 15-page review is based on only 75 references,
although there are thousands of research papers,
articles and reports available on the anatomy,
physiology and treatment of Parkinson’s disease. In
writing the review, the author had to make a series
of expert judgments regarding which were the nine
key papers, containing the most salient, up-to-date
information for understanding the medical treat-
ment of Parkinson’s disease.

Second, the outcome of the review process
is influenced by the theoretical orientation and
professional background of the reviewer. Olanow,
a leading neurologist, provided an authoritative
review written from a biomedical perspective.
In contrast, a physiotherapist working in neuro-
logical rehabilitation might take a different con-
ceptual approach to the causes and treatment of
Parkinson'’s disease. He or she might place more
emphasis on psychological and social factors as
integral components of the etiology and treatment
of Parkinson’s disease.

Third, the selection, analysis, critique and syn-
thesis of the materials is an active, interpretive
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process drawing on the personal experiences,
interests and values of the reviewer. Even if their
professional backgrounds were identical, there are
no guarantees that two reviewers interpreting the
evidence from the same set of publications will
arrive at exactly the same conclusions. Depending
on how these reviewers approached the subject
matter, they might emphasize different aspects of
the evidence or select different patterns in the data
as being important, resulting in different syntheses.
In Chapter 1, we discussed the post-positivist posi-
tion that theories and preconceptions can influence
our perceptions of what is happening in the world,
and therefore shape the way in which we construct
knowledge.

Last, the notion that we all have our experi-
ences, opinions and prejudices does not imply
that ‘anything goes’ when writing health sciences
reviews. On the contrary, we need to apply the
principles of scientific methodology to ensure that
we provide an accurate overview of the literature.
In other words, there are principles which we must
follow in preparing a literature review.

As stated before, in preparing literature reviews
and evaluating research findings, a multiplicity of
papers must be considered, at least according to
the following general steps:

1. Identify relevant literature; select key papers.

2. Critically evaluate key papers, as discussed in this
section. You might decide to discard some papers
if irreparable problems are discovered.

3. Identify general patterns of findings in the litera-
ture. Tabulate findings, where appropriate.

4. Identify crucial disagreements and controversies.
5. Propose valid explanations for the disagreements.
Such explanations provide a theoretical frame-
work for resolving controversies and proposing

future research.

6. Provide a clear summary concerning the state of

the literature, identifying progress, obstacles and
further research.

Systematic reviews

There are several approaches to conducting
health sciences reviews. For example, the previ-
ously mentioned review by Olanow (2004) can
be classified as a ‘narrative’ review. This approach



entails producing a ‘story-like’ overview of the
state of current evidence and theories. Although
reviewers adhere to the principles of science and
logic in conducting a narrative review, there have
been concerns about bias and lack of clarity. More
recently, systematic reviews and meta-analyses
have been introduced to enhance the rigour for
combining and interpreting the state of the litera-
ture. Systematic reviews rely on the explicit use of
the methodological principles discussed in previous
chapters. In effect, systematic reviews follow the
problem-solving approach as used for conducting
empirical research (Schwartz & Polgar 2003, Ch.
14). Let us examine a published example (Polgar
et al 2003) to illustrate the logic and principles
underlying the conduct of systematic reviews.

Research questions

When conducting a systematic review, we are
expected to formulate a clear research question
which will be answered by the outcomes of the
review. You might have read about the current
research using embryonic or stem cells for recon-
structing the brains of people suffering from neuro-
logical conditions such as stroke and Parkinson’s
disease. We were interested in reviewing the evi-
dence for answering the research question ‘How
effective is reconstructive neurosurgery (i.e. the
grafting of immature cells) for improving the signs
and symptoms of Parkinson’s disease?’ (Polgar et al

2003).

Theoretical framework

Although this principle is not adhered to by all
reviewers, it is very useful to specify the theoret-
ical framework(s) which guides a specific review.
The theoretical framework used for conducting the
review was identified as the ‘Repair Model’. This
is a purely biomedical, quantitative view of neural
reconstruction based on the notion that recovery
is due to the replacement of dopaminergic cells
damaged in Parkinson’s disease. An explicit theo-
retical framework is essential for understanding
a given area of health as a coherent research pro-
gramme (Ch. 1).

Systematic reviews

Search strategy

The next step is to identify the relevant publica-
tions. For example, in Polgar et al (2003) we con-
ducted the following search:

A search of MEDLINE (1994-2000 and
2000/01~-2000/10) using the exploded terms
fetal tissue transplantation, Parkinson’s
disease, human or fetal tissue transplants,
Parkinson’s disease, human, also using the
author Kopyov was conducted. In conjunction
with this search, abstracts from the American
Society for Neural Transplantation and
Repair conferences (1999; 2000) were hand
searched for authors that may have been
overlooked. The reference lists of key papers
were searched to identify papers that might
not have been identified through on-line
search mechanisms. An additional electronic
search was conducted using the following
databases: Medline (1966-March Week 2,
2001), Embase (1994-April Week 1, 2001),
CINAHL (1982-March Week 2, 2001).

The general point here is that reviewers must be
diligent in identifying all the publications which
constitute the literature in the area targeted for
review. The search should include both ‘elec-
tronic, on-line searches’ and ‘hand’ searches of key
journals for cross-checking if the relevant papers
were identified by the search engines. It is essen-
tial to have a working knowledge of who the key
researchers are in a particular field and what criti-
cal issues exist in a research programme before we
can undertake a formal published review.

Selection of key papers

Depending on the area of health sciences being
reviewed, literature searches might yield any
number of publications, from one or two to many
hundreds. Relying on the outcome of the search,
the reviewers might restate the research questions
and redefine the scope of the proposed systematic
review. This will expand or restrict the number of
studies for further searchers. In addition, explicit
inclusion/exclusion criteria are used to identify the
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most relevant sources. For example, Polgar et al
(2003) used the following criteria for including a
study in a review. In order to be included in the
review, a study had to:

¢ be published in a peer-reviewed journal

© have transplantation surgery performed after
1993, following consensus for optimal donor
characteristics

¢ have grafted human or embryonic cells

“ have followed ‘best practice’ stereotactic surgery
procedures

© have followed standard post-surgical assessment
protocols.

It would be tedious in the present context to
explain the specific reasons for each of the above
selection criteria; interested readers will find that
they were justified in the original review. The
point is that we must have explicit, objective cri-
teria for including or excluding studies.

The key papers function as a sample of the best
available information accessible in the literature.
Parallel to empirical research, we use the evidence
from key papers to draw inferences about the state
of knowledge in the area under review. The use of
diagnostic searches and explicit inclusion/exclusion
criteria ensure that the ‘sample’ of papers produces
a representative, rather than biased, sample of the
overall knowledge.

Coding the research studies

When the process of selecting and collecting the
publications is complete, we have the available evi-
dence relevant to answering our research question.

Publication  Sample

size of patients
(vears)
Smith (2000) 50 55
Jones (2001) | 60 58
Brown (2001) 50 59
Miller (2002) 55 56
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Table 24.1 Comiance with insulin use by diabetics

Average age

Synthesis of research evidence

The information that we seek is embedded in the
text of research publications. We need to extract
the key information from the text of each of the
papers selected for the review. We can approach
the analysis of the meaning of this information in a
way that is similar to qualitative data analysis (Ch.
21). Similarly to the predetermined codes used in
content analysis, reviewers use the constant fea-
tures of quantitative research for identifying the
categories appropriate for analysing the key papers
(Schwartz & Polgar 2003). These features include:

1. the design of the studies

2. the sampling strategies used and the sample
characteristics

3. the ways in which the treatment or intervention
was administered

4. the data collection strategy used (i.e. the meas-
urement strategy)

5. the statistical and clinical significance of the
results.

Other dimensions or features might also be
coded or the above features can be modified
according to the judgments of the authors. These
aspects of the research process are often pre-
sented in a table form, as shown in Table 24.1. We
used a hypothetical example rather than the pre-
vious published review.

To illustrate coding, consider a set of four hypo-
thetical studies reporting on levels of diabetics’
compliance to insulin administration. The results
and key features of the hypothetical studies are
tabulated in Table 24.1.

Table 24.1 represents how findings from several
publications might be tabulated. Key information

Method of Percentage |

measuring of patients
compliance compliant
Self-report 85
Self-report 82

Blood sugar level 40

Blood sugar level 35



about each study, as well as the outcomes, is pre-
sented in the table, enabling the emergence and
demonstration of an overall pattern.

Interpretation of the evidence

The coding of the hypothetical studies enables the
reviewer to answer the research question: ‘How
compliant are patients with diabetes with using
insulin? The hypothetical summarized evidence
illustrates that sometimes no clear overall trends
emerge from the tabulated findings.

In the simple hypothetical example shown in
Table 24.1, the percentage of compliance reported
by Smith (2000) and Jones (2001) is over twice
that reported by Brown (2001) and Miller (2002).
Clearly, there is an inconsistency in the literature.
A possible explanation for this discrepancy might
emerge by the inspection of Table 24.1. Neither
differences in sample size nor the average ages of
the patients provide an explanation for the differ-
ence. However, the method by which compliance
was measured emerges as a plausible explanation.
The investigators Smith and Jones relied on the
patients’ self-reports and might have overestimated
compliance levels, in contrast to Brown and Miller,
who used a more objective method and found poor
levels of compliance. Of course, this explanation is
not necessarily true, but is simply a hypothesis to
guide future investigations of the problem. There
are other possibilities which might account for the
pattern of findings. It appears that more research is
needed.

Meta-analysis

Dooley (1984) discussed the availability of two
general types of strategies for summarizing research
findings from multiple papers:

1. Qualitative. A qualitative review involves the selec-
tion of key features of related publications such
as designs, subject characteristics or measures
used in the studies. These features are presented
in a table form, such that differences in the fea-
tures of the research can be related to outcomes.
The qualitative reviews identified by Dooley (1984)
are related to the systematic reviews, as we dis-
cussed above.

Meta-analysis

2. Quantitative. A quantitative review calls for the
condensation of the results from several papers
into a single statistic. This statistic represents an
overall or pooled effect size. These procedures
are meta-analyses which are systematic proced-
ures for summarizing the results published in a
set of research papers.

Although many statistical procedures can be
used for synthesizing data, meta-analysis also refers
to an active area of statistics examining strategies
most suitable for synthesizing published evidence.
Statisticians have developed software packages such
as 'Comprehensive Meta-Analysis’ which expedite
the computational difficulties entailed in synthe-
sizing evidence from diverse studies (http://www.
metaanalysis.com, info@metaanalysis.com).

Combining data from diverse studies

How are results synthesized? Let us look at a sim-
ple example for combining data. Say that you are
interested in the average age of the participants in
three related studies: A, B and C (Table 24.2).

Say we wish to calculate the average age for all
the 230 participants in the three studies. Could
we calculate the overall mean, X, simply by add-
ing up the three means and dividing by three? The
answer is no, because there are different numbers
of participants across the groups. We must give
a weight to each of the statistics depending on
‘n’, the sample size for each study. The equation
which we use is:

% - (X, xn)+ (X, xn,)+ (X xn)

n, +1|1B +nC

_ (40 x 80) + (45 x 50) + (60 X 100)

80 + 50 +100

A 80 40
B 50 45
C 100 60
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The point here is that, in order to calculate the
correct overall statistics, we must give a weight
to each study. In general, the weight assigned to a
study represents the proportion of information the
study contributes to the overall analysis. For
the above calculation, weight was determined by
the sample size used in each study. In general the
weight assigned to a study represents the propor-
tion of the information contributing to the calcu-
lation of the overall statistic.

Even the calculation of a simple statistic like
‘average overall age’ can be useful for understand-
ing the state of a research programme. For instance,
in Polgar et al (2003) we found that the mean age
of Parkinson's disease sufferers was 56 years, with
the mean overall duration of the illness being 13
years. These results indicated that the average age
of onset of the disease was only about 43 years,
indicating that experimental reconstructive neu-
rosurgery has been offered to an unrepresentative
sample of Parkinson’s disease sufferers. Typically
people with Parkinson’s disease are in their late
sixties or early seventies.

Of course we need to synthesize other clinically
and theoretically relevant statistics appearing across
the papers constituting a research programme,
including the overall pooled standard deviation, the
overall statistical significance, the overall effect size
and the confidence intervals for the overall effect
sizes. These analyses are best carried out using
statistical software packages. You can check the
Internet for further information regarding the logic
of meta-analysis and currently available software
packages.

Interpreting the results of a
meta-analysis

There are different ways for conducting and
reporting the results of meta-analyses which have
become quite frequent in the health sciences lit-
erature. A typical way of presenting the results
is shown in Figures 24.1 and 24.2, which show
the hypothetical outcome of a computer-assisted
meta-analysis (modified from www.metaanalysis.
com). The graphics shown in these figures are
referred to as ‘forest plots’. A forest plot is a visual
representation of the results of a meta-analysis.
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Say that the printout showed the results of
five randomized double-blind trials (see Ch. 5)
aiming to demonstrate the effectiveness of a vac-
cine for influenza. In each of the studies volun-
teers were given either the vaccine (treated) or
a placebo (control) injection. The following fea-
tures of Figures 24.1 and 24.2 are important for
interpreting the outcomes of a meta-analysis.

Studies

Following searching and critical analysis of the
relevant literature, as discussed previously, the
reviewer selected the five papers shown. If you
look carefully at the sample sizes in each of the
groups under Treated (odds) and Control (odds),
you will find that the sample sizes are not equal.
If they represent randomized trials, you might
ask why the groups were unequal in the stud-
ies. Sometimes unequal groups represent people
dropping out because of harmful side effects to
the treatment.

Effect

The effect size was represented as an odds ratio
(OR), which is a commonly used statistic for
outcomes measured on a nominal scale. For this
measure the outcome is: diagnosed with influenza
following vaccination or placebo over, say, 6 months:
‘yes’ or ‘no’. Looking at the first (English) study,
the odds of ‘yes’ to ‘no’ are 30/530 for the treated
group and 40/540 in the control group. The statis-
tical software package computed an OR of 0.750,
indicating a slight reduction in the odds of contract-
ing influenza. Note that an OR = 1 means equal
odds or no difference at all, while decreasing OR
under 1.0 favours treatment. For example, an OR
of 0.5 would indicate that the vaccination halved
the odds for contracting influenza in the sample.

Confidence intervals

As we discussed in Chapter 17, a 95% confidence
interval contains the true population parameter at
p = 0.95. The lines produced from the ‘squares’
containing the sample OR represent the 95% con-
fidence intervals. You can see in Figure 24.1 that
all the confidence intervals for the five studies
overlap with 1.0, indicating that we cannot infer
that the studies favour the treatment.



Meta-analysis

Study Year Effectsize Treated (odds)  Control (odds) 0.1 5 10

English study 2000 0.750 30/530 40/ 540

Canadian study 2001 1.406 45/445 4017540

Scottish study 2002 0.833 500 /5500 600 /5600

Australian study 2002 0.875 210/2210 24012240

US study 2000 0.667 20/120 30/130

Totl 0.857 80518805 3501900 Favours treatment Favours placebo
Figure 24.1 » Resuits of a hypothetical meta-analysis: negative findings.

Study Year Effectsize Treated (odds) Control (odds) 0.1 0.2 0.5 1.0 2 5 10

Englshstudy ~ 2000 0488 40 /540 82/582 —{—

Canadian study 2001 0.533 32/432 60 /460 @

Scottish study 2002 0.444 400/ 5400 800/ 5900

Australian study 2002 0.637 18072180 24011940 —_—

US study 2000 0480 20/120 501170 &

Total 0.492 67218672 1332/9082 Favours treatment Favours placsbo

Figure 24.2  Results of a hypothetical meta-analysis: positive findings.

Weights and totals

When you look at the ‘odds’ columns in Figures
24.1 and 24.2, you can see that there is a variation
in the sample sizes used in the hypothetical stud-
ies. For example, the ‘Scottish’ study included
12200 participants, while the ‘US’ study included
only 300 participants. These differences contrib-
ute to the relative ‘weight’ of the study repre-
sented graphically by the area of the ‘squares’ in
the forest plots. Clearly, the larger the square, the

greater the sample size. You will also note that the
confidence intervals are wider with the smaller
squares in comparison to the larger squares. As
discussed in Chapter 20, the larger the sample
size, the more ‘power’ we have for making accu-
rate inferences.

The “Totals’ in Figures 24.1 and 24.2 refer to
the overall statistics synthesized from the results
of the five hypothetical studies.. These statistics
are represented by the diamond shapes on the
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forest plots. In Figure 24.1 the total OR was
0.857, indicating a very weak effect for the vacci-
nation. The OR is close to one or equal ‘odds’ for
having influenza. For the results shown in Figure
24.2, the total OR was 0.492. This represents a
strong effect, indicating that the odds for contract-
ing influenza would have been more than halved
by the vaccination. Such results are suggestive of
the clinical or practical significance of introducing
the treatment.

Validity of systematic reviews

The interpretation of the results of published
meta-analyses is far more difficult than indicated
in the above example. Let us look at some of the
sources of difficulties.

Sampling

The results reported in the papers selected for
review generally represent a sample of the total
information published in a field. This leads us to
the first problem: studies that do not report sta-
tistically significant findings are often not submit-
ted or accepted for publication. By not having
access to these ‘negative’ findings, the selection
of papers becomes biased towards those with
reported ‘positive’ outcomes. Also, in published
research papers where outcomes for multiple
dependent variables are reported, only the statisti-
cally significant outcomes are reported, undermin-
ing attempts to synthesize the evidence accurately
(Polgar et al 2003).

In addition, the exclusion/inclusion criteria
used for selecting the studies can result in a sam-
pling bias. Some practitioners of evidence-based
medicine (e.g. Sackett et al 2000) are reluctant
to include studies which have not adopted a ran-
domized experimental design. While this approach
has strong methodological justifications, valuable
information can be lost by using highly selective
inclusion criteria. Of course, the more information
that is lost, the weaker the external validity of the
review or meta-analysis in relation to the ‘popula-
tion’ of research results constituting a research pro-
gramme. The reduced external validity is a trade-off
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for including only methodologically stronger studies
in the review.

Extracting the data

Another source of error arises when extracting the
data from an individual meta-analysis. Some authors
report very clear, descriptive statistics but oth-
ers report their results in an obscure, uninterpret-
able fashion. Also, some journals and authors only
discuss the statistical significance of the results.
Obscure and incomplete reporting of the evidence
leads to errors in synthesizing overall statistics.

The state of the research programme

The validity of a systematic review or meta-analysis
is limited by the methodological rigour and statis-
tical accuracy of the studies selected for review. To
put it bluntly, many health-related problems can-
not be resolved and questions cannot be answered
on the basis of the currently available evidence. An
inconclusive systematic review or meta-analysis
is not necessarily a waste of time. Although incon-
clusive attempts to synthesize data cannot be used
to make valid clinical decisions, they provide strong
evidence for gaps in knowledge and provide objec-
tive grounds for identifying further research required
to advance the research programme (e.g. Polgar et
al 2003). Until better evidence becomes available
we simply provide the best practices suggested by
tradition and experience.

The Cochrane Collaboration

Cochrane (1972), a Scottish medical practitioner,
was one of the first influential practitioners in the
modern era to advocate the systematic use of evi-
dence to inform clinical practice.

In recognition of Cochrane’s pioneering work,
the Cochrane Collaboration, the Cochrane Library
and the Cochrane Database of Systematic Reviews
were established. The Cochrane Collaboration is
now a large international venture with a series of
special-interest groups commissioning and main-
taining reviews on a wide range of topics. There are
also detailed protocols that have been established



for the conduct and presentation of Cochrane
systematic reviews. Although the scope of the
Cochrane database is very broad, much of it is
quite focused on intervention research, i.e. what
intervention approaches work best for specific
health problems and populations. The database
is now expanding into other areas but there is a
strong intervention focus.

The Cochrane approach adheres to a hierarchy
of evidence. There are five levels of evidence, with
systematic reviews of multiple randomized control-
led trials at the top, followed by single randomized
controlled trials, evidence from trials without
randomization but with pre-post, cohort or time
series measurement, evidence from non-experi-
mental studies and, at the bottom level, opinions
of respected authorities. Many reviews, however,
only focus on the top two levels of the evidence
categories. Obviously, because of the intervention-
oriented nature of many Cochrane reviews, quali-
tative research, case study and policy research do
not yet figure prominently in this system.

The Cochrane Database of Systematic Reviews
is available on a wide range of websites in differ-
ent countries. Access arrangements for the reviews
vary widely from country to country. In some coun-
tries some fees are payable, but in others, such as
Australia, the government has taken out a national
subscription so that access may be freely available.
In order to access the database, we suggest that
you use a search engine to search for ‘Cochrane
Collaboration’ and follow the links or consult your
librarian.

Evidence-based practice

Although the name of evidence-based medicine or
evidence-based practice is relatively new, the idea
of using research evidence to inform the design of
clinical interventions is very old. Muir Gray (1997)
provides a very good review of this approach. The
quality movement in health care, at which com-
mentators such as Donabedian (1990) have been at
the forefront, has also been influential in promot-
ing the need for the systematic use of evidence to
promote the delivery of high-quality health care.
As Muir Gray (1997) notes, evidence-based
practice has at its centre three linked ideas. These

are how to find and appraise evidence, how to
develop the capacity for evidence-based deci-
sion making and how to get research evidence
implemented into practice. The finding and
appraising of evidence draw heavily upon systems
such as the Cochrane Collaboration approach
where evidence is systematically collected and
appraised according to pre-defined principles and
protocols. However, the facilitation and imple-
mentation elements of evidence-based practice are
important additions to the basic establishment of
research evidence to support particular approaches
in the provision of health services. The evidence-
based practice movement is based upon the recog-
nition that the mere existence of evidence for the
effectiveness of particular interventions does not
mean that it will necessarily be effectively imple-
mented. This is the new element of evidence-
based practice, the systematic implementation of
programmes based upon sound research evidence.

Summary

We have seen in this chapter that the advancement
of knowledge and practice depends not only on the
results of individual research projects but also on
the information provided by the synthesis of the
results across the literature. Where the projects
share the same clinical aims and theoretical frame-
works, they are said to constitute a research pro-
gramme. In this chapter we outlined the process of
identifying and selecting publications which con-
tain theoretically or practically relevant research
findings. We argued that reviewing a research pro-
gramme is an active, creative process which is influ-
enced by our expectations and attitudes. While
absolute objectivity is not a realistic requirement
of a reviewer, there are basic rules to ensure that
the review of the evidence is carried out with a
minimal degree of bias.

A systematic review of the literature proceeds
by identifying the basic components of research
papers for organizing the evidence. We use these
dimensions to identify patterns or trends which
enable us to synthesize the information and answer
the research questions. When studies are suffi-
ciently similar, their results can be condensed into
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single statistics such as overall effect size. In this
chapter, we examined how the results of meta-
analyses are interpreted.

The relationships between the state of a
research programme and practice are very complex.
We examined hypothetical situations where there
was a strong consistency in the research findings
and clear trends emerging in the literature could
be identified. In these cases, applying the results is
relatively straightforward in that we can either
adopt or reject the use of a treatment on the basis of
the evidence. Systematic reviews and meta-analyses
are essential means for identifying best practices
available for our patients. However, even well-
conceived reviews and meta-analyses can fail to
identify clear trends or clinically meaningful effect
sizes. When the evidence is inconclusive, we sim-
ply continue with traditional practices and identify
further research required for resolving unanswered
questions concerning improved efficacy. In this
way research in the health sciences is a continuous
process, producing better information for advanc-

ing theory and practice, as we discussed in Chapter
1 of this book.

Self-assessment

Explain the meaning of the following terms:

Cochrane Collaboration
combined or pooled results
evidence-based practice
exclusion criteria
extraction (of data)
forest plots

inclusion criteria
literature

literature review
meta-analysis

odds ratio

systematic review
weight (for a study)

True or false

1. The term ‘literature’ refers to the set of papers
purposefully selected by a reviewer.
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2. ‘Trends’ in the literature refer to consistent out-
comes across a number of publications.

3. The conduct and outcomes of a carefully written
review are not influenced by the theoretical posi-
tions of the reviewers.

4. The methodological principles relevant to con-
ducting empirical research are not applicable to
writing literature reviews.

5. Contemporary literature searches use both
‘online’ and traditional means for identifying
relevant papers.

6. Explicitly stated inclusion and exclusion criteria
ensure the objective selection of publications.

7. When conducting a systematic review, the
‘population’ is defined as the literature for an
area of research.

8. Only studies employing randomized double-blind
designs should be included in a systematic review.

9. Odds ratios are used to represent effect sizes for
interval and ratio-scaled data.

10. An odds ratio of 0.95 indicates a large effect size.

11. An overall weighted mean is a useful statistic for

synthesizing the results of studies using continu-

ous outcome measures.

Inconsistent findings should not be included in a

meta-analysis.

The results of a meta-analysis can be graphed

as a forest plot.

14. The ‘weight’ of a study in a meta-analysis is

inversely proportional to the sample size.

Confidence intervals are used to estimate the

range for the probable true values of overall

statistics.

16. The outcomes of systematic reviews and meta-
analyses enable researchers and practitioners to
make decisions based on overall evidence.

12

-

13

15

Multiple choice

1. Which of the following statements is true about

systematic reviews?

a Systematic reviews are the same as narrative
reviews.

b The ‘system’ referred to follows the problem-
solving strategy of applied empirical research.

¢ Systematic reviews are appropriate for syn-
thesizing evidence from qualitative research.

d Narrative reviews are preferable to system-
atic reviews for minimizing reviewers’ bias in
selecting key papers.

e Systematic reviews are alternative strategies
to meta-analyses for synthesizing evidence.



2. Which of the following statements is false
regarding the use of meta-analyses?

a Meta-analyses are statistical strategies for
synthesizing evidence from several empirical
studies.

b Meta-analyses can provide significant
outcomes even when the individual studies
lacked statistical significance.

¢ Meta-analyses are alternative strategies to
systematic reviews for synthesizing evidence.

d Using meta-analyses increases the statistical
power for identifying therapeutically useful
outcomes.

e Meta-analyses are an important component
of evidence-based health care.

3. Consider the forest plots shown in Figure 24.1
and 24.2. These figures indicate that:

a the larger the sample size in a study, the
greater the weight contributed to the overall
results

b the narrower the confidence interval, the
larger the sample size in an individual study

¢ the key outcome measure is the total or over-
all effect size for the studies included in the
analysis

d all of the above (a, b and c) are true

e none of the above (a, b and c) are true.

4. Which of the following is problematic for con-
ducting a meta-analysis?

a ‘Negative’ findings are sometimes not
reported in health sciences journals.

b Some outcomes are measured on a nominal
scale.

¢ Not all published research involves random-
ized controlled designs.

d The Cochrane Collaboration favours the use

of narrative reviews for synthesizing evidence.

e Differences such as samples, measurement
strategies, etc. in each of the studies makes
the synthesis of the evidence ‘invalid’.

5. The best evidence for implementing a treatment
based on a meta-analysis is:

a alarge overall effect size

b very wide confidence intervals

¢ large overall sample sizes

d bothaandb

e none of the above.

Assume that you are working as a rehabilitation
provider in your area of professional practice.
Your supervisor asks you to review the relevant
literature in order to decide if ‘Rehabilitation A’ or

Self-assessment

‘Rehabilitation B’ should be implemented at your
centre. Having identified and critically evaluated
the relevant studies in the area, you find only two
well-designed comparative experiments in which the
outcomes were measured on the same standardized
inventory. The outcomes were as follows:

The t values were calculated for an independent
groups t test, with non-directional H,. Questions
6-10 refer to the above information.

'Vvpbe of df 1 1)

| rehabilitation

10 20 =0.05

Experiment1 A 50
B 30

Experiment2 A 45 58 28 <0.01
B 30

6. A standardized inventory was used to measure
rehabilitation outcome, where p = 40 and o =
10. What was the effect size for Experiment 17
(Hint: use o for calculating effect size.)

a 0.05
b 0.2
c 1.67
d 2.0
e 10.0

7. On the basis of the evidence provided, a plaus-
ible explanation for the results of Experiment 1
being non-significant is that:

a the sample size was too small
b the variability was too large

¢ the effect size was very small
d bothaandb

e all of the above (a, b and c).

8. The results of Experiment 1 indicate the impor-
tance for evaluating the of a statis-
tical analysis.

a application

b sampling error
¢ variability

d power

e reproducibility.

9. Assume that the higher the scores on the
inventory, the better the rehabilitation outcome.
If the clinical significance of the results is set
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at d (effect size) =1, then the trends shown in

Experiment 1 and Experiment 2 indicate that:

a both studies demonstrate clinical significance

b both studies demonstrate statistical
significance

¢ Rehabilitation A should be implemented

d bothaand b

e a,bandc.

10. Your supervisor is concerned that the literature
did not demonstrate a clear trend, considering
the different values for p in the two studies. If you
are not in a position to carry out further research,
you could test the hypothesis ‘Rehabilitation A is
superior to Rehabilitation B’ by:

a using a different statistical test

b using your clinical knowledge

¢ applying narrative analysis

d using a computer model of the outcome
e carrying out a quantitative meta-analysis.

Consider the following two hypothetical scenarios
representing research findings for randomized
controlled trials (RCTs) evaluating the differences
between the outcomes of two treatments, X and
Y. Assume that an independent samples t test was
used to analyse the data. A positive effect size repre-
sents outcomes in favour of treatment X.

Questions 11-13 are based on the information
below:

Scenario A

A 1.0 30 <0.01

B 1.0 30 <0.01

C 1.2 14 =>0.05

D 1.2 14 >0.05
Scenario B

W e s

‘]JI :i_ i.",l .'r{_ ot J|f,

A 0.2 80
B 0.2 100
C —0.1 200 >0.05
D =072 200 >0.05
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11. Which of the following is correct for Scenario A?
a There was a large effect size.

b The results were consistently in favour of
treatment X.

¢ The outcomes for the four studies were stat-
istically significant.

d Bothaandb.

e All of the above (a, b and c) are correct.

12. Which of the following is correct for Scenario B?
a There was a large effect size.

b The results were consistently in favour of
treatment X.

¢ The outcomes for the four studies were not
statistically significant.

d Bothaand b.

e All of the above (a, b and c) are correct.

13. Which scenario demonstrates that treatment X
is more effective than treatment Y?

a Scenario A, because all the studies provided
statistically significant outcomes.

b Scenario B, because all the studies provided
p values greater than 0.05.

¢ Scenario A, because the studies provided
evidence for large and consistent effect sizes.

d Scenario B, because the studies provided
evidence for large and consistent effect sizes.

e Scenario B, because the sample sizes in the
studies were significantly larger than those in
Scenario A.

14. A well-known project for constructing and dis-
seminating the results of systematic reviews and
meta-analyses online is called:

a the Cochrane Collaboration

b the Meta-Analyses Database (MAD)
¢ Medline

d CINAHL

e Embase.



Discussion, questions
and answers

This question is based on a survey which was pub-
lished in an Australian newspaper. Of course, such
surveys do not represent research published in sci-
entific journals, but they are important sources for
public knowledge and/or attitudes towards health
sciences issues. The survey questioned a sample of
adults concerning their smoking habits. Only one
of the questions asked is discussed here and the

results are hypothetical.

Table D24.1 Survey characteristics

Sample
Coverage
Method

Question

Table D24.2 Results

cities

Yes

No

:i’aroem_age of replies to Hlequesﬁon]niwnma

24
76

Melbourn

1000 voters
Australia-wide
Telephone

Do you smoke? (Yes or No)

Questions

The following questions involve the critical analy-
sis of the above survey.

1. If we assume that cigarette smoking is now a

‘stigmatized’ behaviour, do you think the tele-
phone survey produced valid answers?

2. A total of 180 people were interviewed in

Melbourne and 220 in Sydney. If the population
of Australia is 17 million and the populations of
Melbourne and Sydney are 2.5 and 3.2 million
respectively, do the samples appear to be quota
samples?

. Which categories of smokers may not have been

reached by this survey? What implications might
this have for the external validity of the survey?

. A journalist commented on the results, saying:

‘This difference is ironic, given that anti-smoking
lobbyists have applauded Melbourne as a pace-
setter for smoking law reform, such as tobacco
tax-funded health promotion’.
(@) Explain why this comment is inappropriate
given the design of the survey.
(b) What research design would be appropriate
to show a causal effect on smoking due
to health promotion on smoking? (Hint:
see Ch. 6.)

. Explain why the comment quoted in question 4

is inappropriate, given that the statistical signifi-
cance of the results was not calculated.

. Which statistical test should be used to analyse

the significance of the results concerning
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differences in smoking between the two cities?
Justify your selection.

. Setting o = 0.05, calculate the statistic and
decide if the results were significant (note that we
gave the results in percentages).

. Do you think the sample size (n = 1000) was
adequate? Explain.

(42}

Answers

1. Although telephone interviews and mailed-out
questionnaires are a relatively cost-efficient
strategy for collecting data, we have problems
validating the responses. This is particularly true
for conditions and behaviours which are socially
stigmatized: why should respondents disclose
such information about themselves? In face-to- i
face interviews, we can explore issues, for example [
if the respondents have nicotine-stained fingers
or smell of cigarettes, we may pursue the issue
further to establish the accuracy of the replies.

. Given that n = 1000, 18% of the respondents
were from Melbourne and 22% from Sydney. For
a quota sample, the expected samples would be:

Melbourne:ﬁ;_f =100 = 14.7%
and
Sydney:?;72 X100 = 18.8%

Assuming that the information used to calcu-
late the above figures is correct, it seems that
the sample included more respondents from
Melbourne. This may reflect the different propor-
tion of ‘voters’ in the two cities, or a rather poor
guota sample.

. People who are not on the electoral roll, such as
persons under 18 years of age, and people who
do not have or do not answer their telephones,
would not have been contacted. In this way, the
sample may not be representative of all the |

smokers in the city (e.g. young people, poor or | ;

itinerant people, people with unlisted telephone

numbers). Therefore, the survey may not be

externally valid if we generalize to all persons in

Australia who smoke.

. (@) The present survey did not tell us how rates of

smoking have changed over a period of time.

(b) We may use a quasi-experimental design and
introduce the programme in one city, A, but
not in the other equivalent city, B. If the
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answers

reduction is greater over time in A than in B,
we may argue that this difference could reflect
the causal effect of health promotion.

. Although results for the samples show a differ-
ence between the two cities, this may simply
reflect sampling error. We must establish the sig-
nificance of the results before we can draw infer-
ences (‘ironic’ or otherwise) about populations.

. %% nominal data and independent measurements
or samples.

. Convert the data into frequencies (see Ch. 19)
before entering obtained values into a 2 X 2 con-
tingency table (values rounded to closest whole
number).

Table D24.3

Melbourne  Sydney  Total |
Smokers 43 (cell 1) 40 (cell 2) 83
Non-smokers 137 (cell 3) 180 (cell 4) 317
Total 220 400

180

Expected values (for calculation procedure, see
Ch. 19):

83 X 180

f, (cell 1) = - 374
e D) = =750
f (cell2) = 33X 220 _ 457
400
317 x 180
£ cena)=37x180 _ 1406
o teell 3= =05
317 x 220
£ (cong) = 37X220 _ 45,5
o (eell4) = =00
.l — L
%Z, = B ~1.96
fe

1 43

2 40 45.7 32.49 0.71
3 137 142.6 31.36 0.22
4 180 174.3 32.49 0.19
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Critical value of x?; « = 0.05 where degrees of
freedom (df) = 1 (Appendix C)

X2, = 3.84

In this case we would retain H,: there is no asso-
ciation between the variables ‘city’ (Melbourne or
Sydney) and smoking (Yes or No). (For details of
the decision-making process, refer to Ch. 19.) It is
apparent that the results are not significant, there-
fore we are not justified in drawing any inferences
concerning the different proportions of smokers in
Melbourne and Sydney.

8. Although a sample size of n = 1000 appears quite
large, this was an Australia-wide sample which
was divided up to represent regions. It is pos-
sible that the null results obtained in question 7
are because there are no differences in smoking
rates between the two cities, but there are other
possibilities (see Ch. 20). Perhaps the sample
size was inadequate and we made a Type Il error
in our decision. Replicating the study with larger
sample sizes might enable us to show significant
differences in smoking rates.
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